OBIETTIVO
2050

Per una *roadmap* energetica al 2050
Rinnovabili, efficienza, decarbonizzazione

Un rapporto REF-E per WWF Italia
Il Rapporto è stato realizzato da Giulia Ardito, Donatella Bobbio, Matteo Leonardi.

Editing e grafici a cura di Dalia Imperatori.

Supervisione per il WWF Italia: Mariagrazia Midulla

Edizione: Settembre 2012
Indice

Garantire e guardare al futuro per agire nel presente a cura del WWF Italia (Leoni, Paolella)3
Introduzione ..6
Executive Summary .. 8

1.1 La Roadmap 2050 ... 21

1.1.1 Il settore energetico ...22
1.1.2 Il settore trasporti .. 23
1.1.3 Residenziale e servizi ... 24
1.1.4 Industria ... 24
1.1.5 Agricoltura .. 25

1.3.1 Germania: gli obiettivi del governo ... 28
1.3.2 Germania elettricità completamente rinnovabile al 2050 ... 29
1.3.3 Regno Unito obiettivi e gli ultimi sviluppi normativi ... 30

1.4 Il pacchetto clima-energia e gli obiettivi al 2020 ... 33

1.4.1 Sistema di scambio di quote di emissione (EU ETS): la Direttiva 2009/29/CE 33
1.4.2 La ripartizione degli sforzi di riduzione delle emissioni tra gli Stati membri: la Decisione 2009/406/CE .. 34
1.4.3 Cattura e stoccaggio di CO2: la Direttiva 2009/31/CE ... 35
1.4.4 Gli obiettivi nazionali obbligatori sullo sviluppo delle rinnovabili: la Direttiva 2009/28/CE . 36
1.4.5 Riduzione delle emissioni delle autovetture: Regolamento 403/2009 38
1.4.6 Riduzione dei gas a effetto serra nel ciclo di vita dei combustibili: Direttiva 2009/30/CE 38

Box 1. I progressi dell’UE nella riduzione delle emissioni nell’abito degli obiettivi di Kyoto 39

1.5 L’efficienza energetica ..40

1.5.1 L’efficienza degli usi finali dell’energia .. 41
1.5.2 La nuova proposta di direttiva sull’efficienza energetica ... 42
1.5.3 Gli emendamenti ITRE ... 43

2.1 La domanda energetica finale ...45

2. Gli scenari 2030 e 2050 ...45

Box 2. Efficienza energetica e crisi ..48

2.1 La domanda elettrica .. 50

2.1.1 I profili di prelievo .. 51
Obiettivo 2050 – Un rapporto REF-E per WWF Italia

2.2 La produzione di elettricità

2.2.1 L’autoproduzione

2.2.2 Il profilo di produzione giornaliero

2.3 I costi

2.4 Emissioni di CO2

3.1 Un piano energetico di lungo periodo

3. Policy

3.2 Una governance funzionale agli obiettivi

3.3 Una fiscalità coerente con gli obiettivi

3.4 Una via intelligente e coraggiosa per l’efficienza energetica

3.5 Dagli incentivi al sistema rinnovabile
Con il rapporto “Obiettivo 2050 per una roadmap energetica al 2050, rinnovabili, efficienza, decarbonizzazione” commissionato al REF-E, il WWF Italia vuole offrire un contributo e proposte concrete per avviare finalmente il nostro Paese nel contesto del dibattito europeo ed internazionale sugli scenari energetici al 2050.

Nel 2010 il WWF internazionale ha affidato a Ecofys lo studio “The energy report: 100% renewable energy by 2050” che ha dimostrato come per la metà del secolo tutta la domanda energetica mondiale, compresa quella di coloro che oggi non hanno accesso all’energia, possa essere coperta dalle fonti rinnovabili oggi esistenti; studi analoghi sono stati effettuati su singoli Paesi, non solo dal WWF, ma anche da Governi e prestigiosi istituti di ricerca come McKinsey; l’Imperial College di Londra; Oxford Economics e ECF. Anche a livello di Unione Europea la Commissione ha presentato numerose proposte, dalla “RoadMap verso una low-carbon economy nel 2050” alla “Energy Roadmap 2050”.

Tuttavia in Italia l’eco di questo fiorire di proposte e politiche è stato molto scarso, specie a livello politico: la strategia energetica nazionale, più volte promessa e addirittura prevista in leggi e decreti, non è stata ancora messa a punto; nonostante la recente presentazione da parte del ministro dell’Ambiente e della Tutela del Territorio e del Mare, Corrado Clini, della proposta di delibera CIPE “Una roadmap per la decarbonizzazione” relativa agli impegni al 2020, è ancora fuori dall’orizzonte politico la necessità di una strategia a lungo termine che segni delle tappe, coniugando gli impegni già assunti in sede europea per ridurre le emissioni di gas serra e affrontare i cambiamenti climatici e le strategie di lungo periodo.

Lo studio commissionato dal WWF vuole dunque offrire un contributo per superare questa fase di stallo e aiutare i decisori politici, tracciando uno scenario energetico al 2050 compatibile con gli obiettivi di policy indicati dall’Unione Europea. Del resto, il Governo italiano, di qualsiasi segno sia, non può prescindere dalla fondata convinzione da parte di Stati e settori qualificati della società che le prospettive di uscita dalla crisi economica e di sviluppo futuro deve proprio nascere e crescere nel contesto dello sviluppo sostenibile, a partire dalla decarbonizzazione del settore energetico, nonché dalla manifesta volontà del corpo elettorale che ha nuovamente confermato il rifiuto del nucleare.

Non abbiamo trovato da parte delle maggiori imprese energetiche nazionali, che pure sono importanti multinazionali, un pari sforzo ad offrire soluzioni.

Il lavoro presentato da REF-E illustra come il settore elettrico può da solo annullare al 2050 le proprie emissioni climalteranti pur fornendo quasi la metà del fabbisogno energetico del
nostro Paese. Questo grazie a tre pilastri: 1) l'efficienza energetica negli usi finali; 2) il trasferimento di parte della domanda energetica sui consumi elettrici; 3) il pieno soddisfacimento della domanda elettrica attraverso il ricorso alle fonti rinnovabili.

Lo studio sottolinea come non sia la variabile tecnologica né quella economica a rappresentare la maggiore difficoltà, bensì quella relativa alle politiche.

Le politiche attuate in Italia su energia e cambiamenti climatici sono state assolutamente discontinue e piena di contraddizioni. Dal proseguimento e completamento del processo autorizzativo per nuove centrali a carbone, alla perseveranza nell'opzione nucleare, alla discontinuità delle incentivazioni per le energie rinnovabili, alle ipotesi di incentivazione delle rinnovabili termiche e del conto energia, preannunciate a poi ritirate, al pasticcio delle detrazioni fiscali per le ristrutturazioni portate al 50% ma che di fatto assorbono e cancellano il bonus per l'efficienza energetica. E la lista potrebbe essere infinita.

Manca una visione del sistema energetico nazionale di lungo periodo. Le infrastrutture e gli investimenti in opere pubbliche sono condizionati da politiche del momento e di corto respiro, con incentivi visti più come favori che come effettiva leva di politiche energetiche e industriali. Eppure il rinnovamento del settore elettrico basato su un paradigma di sostenibilità potrebbe rappresentare un'opportunità per l'economia europea, in termini di occupazione, di sicurezza energetica e degli approvvigionamenti ed in termini di sviluppo dell'impresa europea.

Ma per fare questo, come il rapporto in più passaggi sottolinea, è indispensabile una chiarezza di indirizzo di policy ed un coinvolgimento di tutti gli attori, non solo le grandi imprese energetiche, ma anche le amministrazioni pubbliche e non ultimi dei cittadini.

Vorremmo sottolineare due degli spunti contenuti nello studio, forse minori ma molto significativi, riferiti proprio a questi due ambiti.

- le difficoltà oggi interposte dalla regolazione nel promuovere l'autoproduzione in piccole reti d'utenza. Ci sembra che, di fronte all'evidenza dei cambiamenti climatici ed alla difficoltà dell'impresa tradizionale a trovare soluzioni, sia opportuno garantire al massimo il diritto dei cittadini a ricorrere alle fonti rinnovabili in sistemi decentrati. I cittadini con la loro responsabilità ed il loro apporto economico rappresentano un volano alla diffusione delle fonti rinnovabili: ci sembra opportuno allargare le possibilità ad offrire nuove soluzioni (ad esempio reti rinnovabili di dimensione condominiale), anziché restringerle.

- L'amministrazione pubblica emerge come un tassello fondamentale per l'efficienza energetica (e per il cambiamento di paradigma in generale). Investire in efficienza non significa indebitare un Comune o un'amministrazione pubblica, ma al contrario renderla economicamente più stabile. Non ha senso che oggi gli investimenti in efficienza energetica, anche nella forma di contratti di leasing con E$CO, siano

4 Le Energy Service Company (ES$CO) sono società che effettuano interventi per migliorare l'efficienza energetica, assumendo su di sé il rischio dell'iniziativa e liberando il cliente dagli oneri organizzativi e di investimento.
eqiuparati all’indebitamento e ricadano nei vincoli di bilancio del patto di stabilità, mentre le bollette energetiche siano pagate a piè di lista come spese correnti.

Lo studio ci fornisce una prima indicazione per un percorso chiaro, che si sviluppa in poche tappe di definizione dello scenario, in alcuni passaggi inevitabili di riforma e in priorità per sistemi elettrici. Un percorso in cui le rinnovabili non rappresentano “un problema”, bensì il contesto entro cui si dovrà operare.

Non è stato un lavoro facile per il WWF: lo scenario presentato non è d’impatto neutro per la nostra associazione. Assumere che i consumi elettrici siano del 30% superiori al 2050 di quanto sono oggi e che la generazione da fonti rinnovabili aumenti da circa 80 a oltre 400TWh, non è un passaggio facile, perché ogni scelta ha comunque un impatto, che va minimizzato.

E’ ovvio che ci fondiamo sull’esigenza ormai ineludibile che le istituzioni, in primis le Regioni, garantiscono quello che finora è del tutto mancato, la programmazione del territorio. Così come i nostri 300 mila soci e le nostre sezioni regionali e locali hanno dovuto fare i conti con questi scenari, ci auguriamo che chi ancora sostiene la necessità di costruire centrali termoelettriche a carbone, chi ancora sostiene di perseverare con benzina e diesel per alimentare le automobili, chi continua ad anteporre i problemi, anziché cercare le soluzioni, faccia i conti con il futuro e con i propri pregiudizi nei confronti delle fonti rinnovabili. Oggi si può discutere della necessità di una transizione, a patto che l’obiettivo sia chiaro e il percorso per raggiungerlo coerente e trasparente.

Infine ci sembra opportuno condividere una riflessione, che molto avvicina la questione ambientale e quella dei cambiamenti climatici allo scenario economico e sociale dell’Europa di questo ultimo periodo. Far pagare il conto al prossimo in un indefinito futuro, è un trucco che funziona fino a quando non si scopre di essere “il prossimo” e che il futuro è adesso.

Lo studio di REF-E mostra come il costo complessivo della trasformazione del sistema elettrico sia sostanzialmente paragonabile a quanto ci costerebbe preservare l’attuale paradigma fondato sulle fonti fossili, con la differenza che il prezzo della riconversione dell’oggi andrà a beneficio delle generazioni future, mentre continuare a pagare per mantenere lo statu quo andrebbe a loro danno. E’ questo, in fondo, il cuore del percorso verso l’economia sostenibile.

Stefano Leoni Adriano Paolella
Presidente WWF Italia Direttore Generale WWF Italia
Nel 2009 l'Unione Europea si è posta l'obiettivo di ridurre le proprie emissioni di gas serra dell’80-95% entro il 2050 rispetto ai livelli del 1990.

Nel 2011 la “Roadmap 2050” della Commissione ha proposto una tabella di marcia per le prospettive d’azione fino al 2050 che consentirà all’UE di conseguire l’obiettivo di riduzione concordato preservando e supportando la competitività dell’economia.

In questo contesto alcuni Stati nazionali, Germania, UK e Scozia, hanno elaborato e presentato piani d’azione nazionali compatibili con la visione Europea.

Nel Marzo 2012 il WWF Italia ha commissionato a REF-E uno studio finalizzato alla descrizione di uno scenario energetico al 2050, compatibile con gli obiettivi di riduzione delle emissioni proposte dall’Unione Europea, e caratterizzato da un totale ricorso alle fonti rinnovabili nella generazione elettrica.

Il lavoro richiesto consiste nello sforzo di descrizione di un possibile sistema energetico quale esito del percorso di riforma voluto dall'Unione Europea. La Roadmap europea chiama questo lavoro di “back cast” anziché di “forecast”, proprio per dare l’accento al percorso necessario più che all’obiettivo finale.

Non è un lavoro di previsione. Le previsioni infatti si basano sul prolungamento di dinamiche fondamentali oggi visibili e caratterizzanti i sistemi economici, mentre la costruzione di scenari compatibili con obiettivi di policy significa identificare le macro tendenze necessarie affinché tale obiettivo divenga raggiungibile.

Lo scenario al 2050 sarà possibile solo se nel periodo 2020-2050 si verificheranno e si metteranno in campo una serie di cambiamenti nei mercati energetici europei. Ecco perché “back cast”. Fornire una visione al 2050 è quindi uno strumento per percorrere a ritroso quello che sarà necessario mettere in campo in termini di tecnologie, policy e investimenti economici da qui al 2050 per rendere possibile l’obiettivo di riduzione delle emissioni climateranti ai livelli auspicati dall'Europa.

Nel lavoro, allo scenario 2050 viene pertanto aggiunta una fotografia intermedia al 2030 che serve a legare la visione di lungo periodo con gli obiettivi di riduzione del CO2 in un orizzonte temporale più vicino.

Il quadro di policy europea al 2020, con l’eccezione rilevante della direttiva
sull’efficienza energetica, è oramai completo. Lo scenario 2050 si verificherà solo se al 2030 i fondamentali dei mercati energetici avranno intrapreso nuove dinamiche valorizzando gli esiti delle politiche al 2020.

Il lavoro consiste di tre parti:

• una **prima parte** inquadra il lavoro nel contesto delle politiche europee per la lotta ai cambiamenti climatici con particolare riferimento alla Roadmap 2050. Si fa riferimento all'attuale pacchetto normativo messo in campo dall’Unione e dalle implicazioni di lungo periodo nei tre ambiti fondamentali: efficienza energetica, fonti rinnovabili ed ETS. Si fornisce un resoconto delle strategie nazionali ed altri studi WWF sugli obiettivi di lungo periodo

• una **seconda parte** sviluppa scenari di trasformazione del settore energetico in Italia al 2030-2050 con particolare riferimento al settore elettrico con l’obiettivo di fornire una descrizione del mercato elettrico al 2050 al 100% rinnovabile.

I dati di partenza sono costituiti dagli obiettivi della Roadmap 2050 e dallo studio del WWF internazionale “the energy report 100% renewable by 2050”, adattati al mercato italiano. Un peso particolare verrà dato agli obiettivi di efficienza energetica. L’esito è la descrizione del mercato elettrico al 2050 composto al 100% da fonti rinnovabili, con un mix di diverse fonti e implicazioni in termini di bilanciamento e accumulo di energia a sicurezza del sistema. E’ fornita una valutazione di costo complessivo

• una **terza parte** mette in luce i nodi e i passaggi necessari alla trasformazione dei mercati, fornendo possibili strumenti innovativi di policy, nel settore elettrico e per l’efficienza energetica.
La pubblicazione della Roadmap, a seguito dei pronunciamenti del Consiglio Europeo, ha cambiato le regole del gioco nel costruire scenari di lungo termine. La presenza di un documento di policy da parte della Commissione Europea con un obiettivo definito al 2050, la riduzione delle emissioni GHG dell’80-95% rispetto al 1990, anticipa l’intento di riforma dei sistemi energetici negli sforzi normativi dei prossimi anni. Inevitabilmente ne condiziona gli scenari. Qualsiasi scenario business as usual, qualsiasi scenario reference a politiche esistenti porta a risultati totalmente incompatibili con il proposito di policy.

Le variabili che caratterizzeranno il contesto 2050 sono molteplici, complesse e di difficile previsione: la variabile tecnologica dopo anni di investimenti e ricerca, la variabile economica in economie mondiali in grossa trasformazione, la variabile politica dei negoziati internazionali sui cambiamenti climatici. Non è certo facile offrire una visione al 2050. Tuttavia risulta più semplice identificare le condizioni senza le quali non è possibile il verificarsi dello scenario.

La strada percorribile per la decarbonizzazione passa in tre mosse fondamentali:

- efficienza energetica
- spostare parte consistente della domanda energetica finale, in particolare del settore industria e trasporti, sul settore elettrico
- incrementare l’impiego delle fonti rinnovabili nella generazione elettrica.

E' difficile, oggi, immaginare un percorso diverso. Diverse saranno le percentuali e i contributi di questa trasformazione da parte delle diverse tecnologie e opzioni. Ma questi tre passi permettono, con l'attuale set di tecnologie, di raggiungere l'obiettivo di riduzione delle emissioni a un costo sostenibile. Questo è il percorso individuato da tutti gli enti governativi e di ricerca che si sono dedicati al lavoro, con evidenti differenze sulla quantificazione dei fenomeni all'interno di queste tre variabili, ma con un sostanziale accordo nella direzione.

Se da un lato dunque è prudente non esporsi nella descrizione del nostro mondo tra 40 anni per dare importanza a voler cogliere l’elemento più importante dei sistemi energetici di oggi ovvero la complessità delle variabili, dall’altro è importare isolare i passaggi obbligati che permettono il successo della politica energetico-ambientale dell’Europa.

In estrema sintesi il percorso che illustreremo nelle prossime pagine prevede (Tabella A e Figura A):

- una diminuzione dei consumi energetici finali del 40% al 2050 rispetto al 2010
- un incremento del contributo del settore elettrico sulla domanda finale dall’attuale 20% al 43%, nel 2050 pari a un aumento della domanda elettrica finale del 30% rispetto al 2010
- una progressiva e lineare penetrazione delle fonti rinnovabili nella generazione elettrica di circa +8 TWh/anno nel periodo, fino al totale soddisfacimento della domanda.
Tabella A. Domanda finale di energia (Mtep) e apporti elettrici per settore

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domanda finale di energia</td>
<td>126.6</td>
<td>105.6</td>
<td>76.0</td>
</tr>
<tr>
<td>di cui elettrico</td>
<td>19.9%</td>
<td>28.8%</td>
<td>43.7%</td>
</tr>
<tr>
<td>Industria</td>
<td>32.1</td>
<td>26.3</td>
<td>19.3</td>
</tr>
<tr>
<td>di cui elettrico</td>
<td>32.7%</td>
<td>41.4%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Civile</td>
<td>49.1</td>
<td>39.9</td>
<td>29.5</td>
</tr>
<tr>
<td>di cui elettrico</td>
<td>26.9%</td>
<td>30.9%</td>
<td>35.0%</td>
</tr>
<tr>
<td>Trasporto</td>
<td>42.4</td>
<td>36.7</td>
<td>25.4</td>
</tr>
<tr>
<td>di cui elettrico</td>
<td>2.4%</td>
<td>18.0%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

Fonte: elaborazione REF-E

E' un percorso che si basa su un progressivo avvicinamento al target attraverso il consolidamento strutturale di tendenze dei mercati energetici già verificatesi negli ultimi anni.

Avere a disposizione quaranta anni per riformare i mercati energetici sarà occasione di crescita economica del paese. Solo se l’azione sarà intrapresa subito e si riuscirà a dare una continuità e una linearità agli investimenti si potrà fare coincidere l’obiettivo ambientale con quello di crescita economica fornendo una dimostrazione pratica della green economy. Al contrario, un’azione ritardata nel tempo implicherà la necessità futura di adottare obiettivi più stringenti e più traumatici per l’economia e gli investimenti.

Figura A: I tre passi della Roadmap 2050

Fonte: elaborazione REF-E
In modo più discorsivo possiamo dire: “per raggiungere gli obiettivi di decarbonizzazione fissati dall’Europa, la strada che oggi possiamo percorrere si basa sulla costruzione di un sistema energetico che sia in grado, attraverso l’introduzione di adeguate politiche e strumenti, di ridurre i propri consumi finali del 40%, di indirizzare il più possibile i consumi energetici finali, in particolare del settore del trasporto e dell’industria, sulla domanda elettrica, e conseguentemente sia in grado di trasformare il mercato elettrico da un mercato la cui struttura e organizzazione è pensata per il dispiaccionamento dell’energia elettrica generata da impianti alimentati da fonti fossili, a un mercato funzionale alle sole fonti rinnovabili.” Su questo ultimo punto il lavoro dedica particolare attenzione offrendo la descrizione di uno scenario in cui le fonti rinnovabili arrivano a garantire il 100% dei consumi finali al 2050.

Gli step fondamentali in presenza dei quali è possibile affermare che i mercati energetici hanno abbandonato il modello di business as usual ed imboccato la traiettoria tracciata dalla Roadmap 2050, per ciascuna delle mosse individuate nell’analisi, sono:

- l’adozione di un obiettivo vincolante di riduzione, in termini assoluti, dei consumi energetici finali, così come è stato fatto con le emissioni di CO2 degli impianti industriali e con gli obiettivi di penetrazione delle fonti rinnovabili sui consumi finali, mentre fino a oggi tutti gli obiettivi presenti nella normativa nazionale o europea sono indicativi e sempre in termini relativi (aumento efficienza energetica)
- la presenza di una strategia coordinata di trasferimento dei consumi finali di energia, in particolare del trasporto e dell’industria da fonti primarie non rinnovabili al settore elettrico. Tale strategia implica trasformazioni tali che per essere credibile non può non contenere una revisione della politica fiscale sull’energia (trasferimento della domanda al settore elettrico)
- lo spostamento dell’attenzione nella regolazione dei mercati elettrici dai sistemi di remunerazione degli impianti programmabili alimentati da combustibili fossili (borsa elettrica, mercato del giorno prima) ai sistemi di remunerazione degli impianti rinnovabili non programmabili caratterizzati dalla prevalenza di costi fissi. Questo implica uno spostamento dell’attenzione sulle tecnologie per l’accumulo, la sostituzione dei meccanismi d’incentivazione con mercati della capacità riservati alle sole rinnovabili, la promozione della generazione distribuita (sviluppo rinnovabili).

Non è un percorso facile, ma se delineato, sarà sicuramente più semplice identificare quelle che sono le azioni, le politiche e gli investimenti che si dirigono su tale percorso o ne sono in contraddizione. Per questo motivo lo studio sottolinea l’importanza di avere un piano nazionale in cui vengano definite le direttive della politica energetica del paese così come è stato fatto da Regno Unito e Germania.

Il 2030 rappresenta un momento fondamentale del lavoro perché, più vicino nell’orizzonte temporale, permette di identificare obiettivi che, per realizzare lo scenario 2050, dovranno essere presenti nell’elaborazione delle policy dei prossimi anni. La strada della decarbonizzazione dei sistemi energetici, e di quelli elettrici in particolare, è un percorso lineare in cui è fondamentale non accumulare ritardi che renderebbero nel tempo gli obiettivi più
Obiettivo 2050 – Un rapporto REF-E per WWF Italia

Lontani e più difficile e oneroso il costo futuro di adattamento.

Del lavoro presentato sarà poco produttivo entrare nello specifico del numero proposto, della quantità o della tecnologia scelta (variabili oggi solo intuibili), ma sarà utile confrontarsi sulle tre macro dinamiche emerse e una volta riconosciute come inevitabili verificare che i sistemi attuali siano coerenti con queste.

Nel lavoro abbiamo cercato di attenersi alle regole del gioco stabilite dalla Roadmap europea e dagli altri lavori sul tema, ovvero la costruzione di percorsi tecno-economici fondati su tecnologie già disponibili o con un orizzonte temporale certi.

E’ escluso dallo scenario il ricorso al nucleare. Il ricorso alla pratica di Carbon Capture and Storage, ancora in fase sperimentale, non viene considerata nello specifico del settore elettrico ma indicata come pratica di abbattimento delle emissioni dei consumi energetici dei settori industriali. Entrambe le opzioni tecnologiche, presenti in qualche caso negli altri studi a cui abbiamo fatto riferimento, non emergono in nessuno di essi come sostanziali al raggiungimento degli obiettivi del settore elettrico. Il loro impiego pertanto non è significativo nel presentare le dinamiche di fondo dello scenario.

Priorità all’efficienza energetica

La riduzione dei consumi in termini assoluti è la conditio sine qua non del realizzarsi della policy europea. E’ difficile infatti ipotizzare uno scenario di piena decarbonizzazione al 2050 senza una significativa riduzione dei consumi finali di energia. Per mantenere l’attuale livello di servizi tale obiettivo andrà raggiunto attraverso il miglioramento dell’efficienza energetica negli usi finali.

Nello scenario che presentiamo i consumi energetici italiani al 2050 saranno del 40%
inferiori a quelli del 2010 con due tappe intermedie al 2020 (-5%) e al 2030 (-16%).
Perché questo avvenga saranno necessarie misure per l’efficienza energetica in grado di ridurre i consumi in termini assoluti dello 0.5% anno nel periodo 2010-2020, dell’1.2% nel periodo 2020-2030 e dell’1.65% nel periodo 2030-2050.

E’ un’ipotesi quantitativa in linea con 3 dei 5 scenari proposti della Commissione Europea nella sua Roadmap e con lo studio Ecofys per WWF internazionale. Altri lavori, in particolare il documento programmatico del Governo tedesco, presentano scenari di efficienza ancor più marcati proponendo una riduzione dei consumi finali sino al 50%.

Abbiamo tuttavia privilegiato la scelta di uno scenario in linea con la Commissione Europea a uno scenario più incisivo. Incrementi dell’efficienza energetica a livelli superiori a quelli proposti possono soltanto facilitare il raggiungimento degli obiettivi ma non modifieranno le dinamiche di fondo. Al contrario sistemi energetici con consumi finali più elevati difficilmente permetteranno il verificarsi dello scenario con un esclusivo ricorso alle fonti rinnovabili.

È importante sottolineare come per il verificarsi dello scenario sia necessaria la riduzione dei consumi finali in termini assoluti e come ad oggi non esistano a livello nazionale o europeo meccanismi di policy in merito. Tutta la normativa sull’efficienza energetica esistente e in discussione non introduce, come invece viene fatto nel settore delle rinnovabili e delle emissioni di CO2 nel settore industriale con l’ETS, obiettivi di riduzione dei consumi finali di energia in termini assoluti, ma unicamente strumenti di promozione dell’efficienza energetica in termini relativi rispetto all’andamento finale della domanda.

Incremento della quota elettrica sulla domanda finale
Il settore energetico al 2050 vede la quota di energia elettrica aumentare il proprio contributo percentuale sul bilancio energetico finale. A fronte di una diminuzione complessiva dei consumi energetici del 40% la generazione elettrica incrementa del 30% rispetto al 2010 pari a un aumento medio annuo dello 0.7%. Una diminuzione dei consumi del 50% permetterebbe un incremento contenuto degli apporti elettrici al +10% rispetto al 2010.

A oggi l’energia elettrica ricopre circa il 20% del bilancio energetico. Tale contributo è previsto incrementare al 28% al 2030 e al 43% al 2050. In sostanza lo scenario prodotto vede poco meno della metà dei consumi finali di energia al 2050 orientati sul settore elettrico. Per alcuni settori (industria e agricoltura) tale trasferimento si traduce in una sostanziale stabilità della domanda elettrica, a fronte di una diminuzione complessiva dei consumi energetici, nel settore residenziale, al contrario, la riduzione della domanda finale determinerà anche una riduzione della domanda elettrica. Sarà il settore dei trasporti a influire sull’incremento della domanda elettrica finale.

Il settore dei trasporti è forse quello più critico nel raggiungimento degli obiettivi. Al 2050 è stata inserita una diminuzione del consumo finale del 40%. Tale performance è
garantita dallo spostamento tecnologico del trasporto privato dal motore a combustione interna al motore elettrico e da un maggiore ricorso della trazione elettrica per il trasporto merci. Ulteriori riduzioni del consumo potranno essere realizzate attraverso politiche focalizzate sulla domanda: politiche di urbanizzazione che prevedano una diminuzione del fenomeno dello sprawling urbano, il decentramento dei servizi, politiche per la distribuzione oraria della domanda di punta.

Nello scenario proposto il 50% della domanda finale di trasporto al 2050 è stata trasferita nel settore elettrico.

Anche a fronte di una diminuzione dei consumi del 40% al 2050, il settore dei trasporti copre un terzo dei consumi finali di energia. Nell’ottica di uno scenario in cui le emissioni GHG sono ridotte dell’80-95%, tale quota di domanda dovrà essere soddisfatta o con il ricorso a biocombustibili o con una significativa penetrazione della trazione elettrica. Lo scenario ha privilegiato l’ipotesi elettrica. Questo rende l’obiettivo di penetrazione delle rinnovabili nel settore elettrico (100% al 2050) più ostico, ma facilita l’obiettivo settoriale dei trasporti nella Roadmap.

Usare l’energia elettrica e la sua rete di trasporto è necessario a soddisfare una domanda energetica, comunque ridotta del 40%, che in molti casi non coincide con la disponibilità di risorse energetiche rinnovabili in loco. Lo scenario prevede il trasferimento di parte della domanda di calore nel settore elettrico. Il 35% dei consumi domestici finali e il 50% di quelli industriali al 2050 è elettrico. Percentuali più basse rispetto agli scenari di altri paesi europei grazie agli apporti previsti dal solare termico e dalla geotermia a bassa entalpia.

Anche in questo passaggio, lo scenario proposto si mantiene sulle dimensioni quantitative identificate dalla Roadmap europea: a fronte di un nostro 43% sulla domanda finale al 2050 il contributo elettrico degli scenari Roadmap varia dal 36 al 39%. Diverso invece lo scenario tedesco che trasferisce solo una quota limitata del trasporto al settore elettrico affidando buona parte della domanda alla filiera dei biocombustibili.
100% rinnovabili al 2050

Il terzo passaggio per la decarbonizzazione prevede un massiccio ricorso alle fonti rinnovabili nella generazione elettrica fino a raggiungere il 100% della generazione al 2050. Il dato di partenza è del 25% al 2010. Si tratta in sostanza di smobilitare risorse economiche e potenziali tecnici per incrementare la generazione da fonti rinnovabili dai 76.9 TWh del 2010 agli oltre 400 TWh del 2050. La crescita da fonti rinnovabili dal 2020 dovrà essere nell’ordine dei 7.5-9 TWh anno in linea con la crescita del 2011 sul 2010 di circa 9 TWh, ma su volumi decisamente più consistenti rispetto alla crescita del periodo passato (5.7 TWh dal 2010 su 2009 al netto degli andamenti dell’idroelettrico) e alla media storica (3 TWh/anno nel periodo 2004-2011).

Il costo complessivo del rinnovamento del parco di generazione elettrico è stimato in 7-9 miliardi di euro/anno nel periodo 2020-2050. La stima include unicamente i costi dell’infrastruttura nella generazione elettrica. A essi si devono aggiungere i costi per l’efficienza energetica, gli accumuli e le infrastrutture di trasporto. Con queste integrazioni il volume d’investimenti sembra quindi in linea con gli ordini di grandezza del valore di 20 miliardi di euro/anno quale stima degli investimenti avanzata dal governo tedesco. Gli investimenti per la realizzazione delle infrastrutture nel settore della generazione elettrica è stato quantificato in circa lo 0.5% anno del PIL.

La maggior parte dei costi di questa operazione sarà recuperata dalla vendita dell’energia elettrica agli utenti finali. In particolare, la domanda crescente di energia elettrica assorbirà circa un terzo della nuova generazione annuale rinnovabile, mentre la quota rimanente di produzione rinnovabile sostituirà le fonti fossili con l’effetto di ridurre la remunerazione degli investimenti dei produttori con centrali termoelettriche. Gli investimenti nella capacità rinnovabile (attraverso meccanismi d’asta di capacità, con una sorta di capacity payment per le sole rinnovabili) andrebbero a sostituire gli investimenti in capacità fossile che diventerebbe inutilizzata nel lungo periodo. I costi per lo sviluppo delle infrastrutture di rete e degli accumuli andranno anch’essi a ricadere nelle tariffe elettriche finali. E’ molto importante sottolineare come la gran parte dell’incremento della domanda elettrica deriva dall’inclusione di quote sempre maggiori di consumi nel settore dei trasporti i cui consumi (diesel e benzina) sono gravati da un’alta componente di fiscalità. Lo scenario tende a ottimizzare il progresso degli investimenti nel settore elettrico in maniera tale da disegnare una crescita equilibrata e costante del parco impianti negli anni.

Tale linearità, che è la premessa della crescita industriale, mantiene il volume degli investimenti tra i 7 e i 9 miliardi/anno dal 2020 al 2050 e prevede un obiettivo intermedio al 2030 di 219 TWh pari al 60% dei consumi elettrici.

Oltre alle dinamiche e alle novità dei mercati elettrici è possibile fornire degli ordini di grandezza per gli apporti delle diverse fonti.

La Figura 1 riporta il mix delle fonti al 2010, 2030 e 2050.
Al 2030 il 60% della domanda elettrica finale è data da apporti rinnovabili. Un quarto della domanda elettrica è fornito dal solare fotovoltaico contro il 4% di oggi. Il costo d'installazione del fotovoltaico è previsto raggiungere la grid parity già prima del 2020. Buona parte degli impianti saranno installati direttamente nei luoghi di consumo in autoproduzione (il 60% del totale fotovoltaico). La curva di domanda di rete risulterà completamente modificata. Ancora nel 2030 nel periodo invernale i picchi di domanda saranno concentrati nelle ore diurne, ma già nei periodi estivi l’autoproduzione fotovoltaica sulle reti di distribuzione invertirà i volumi della domanda tra le ore diurne e le ore notturne. La penetrazione del trasporto privato elettrico, i cui tempi di ricarica sono concentrati nelle ore notturne, acuirà questa inversione.

Saranno necessari investimenti nei sistemi di accumulo attraverso un diverso ricorso agli impianti idroelettrici a bacino e la dotazione di batterie presso le utenze finali o sulle reti. Il quadro è completato con un 8% di eolico rispetto all’attuale 3-4%, un 2.5% di geotermico con lo sfruttamento di risorse a minore entalpia, un 11% di biomassa, di cui circa il 40% in autoproduzione industriale con apporti minimi domestici. I combustibili fossili copriranno il rimanente 40% della domanda finale.

Al 2050 lo scenario prevede una penetrazione delle rinnovabili al 100%. Una grossa parte della domanda elettrica (circa il 35-40%) potrà essere soddisfatta da solare fotovoltaico. Nei mesi estivi si prevede una generazione di eccedenze non assorbibile dai sistemi d’accumulo con disponibilità di energia elettrica per l’esportazione. Rispetto al 2030 è ipotizzabile una maggiore attenzione agli investimenti in solare termodinamico (12% al 2050) che contiene in sé la capacità di accumulo. In particolare, è stato ipotizzato un assetto del solare termodinamico in grado di prolungare la generazione elettrica sino a 6 ore oltre il
Obiettivo 2050 – Un rapporto REF-E per WWF Italia

tramonto. Eolico al 15% della domanda finale e biomasse che chiedono la domanda di rete con un contributo finale del 22%. **Lo scenario è descritto con circa i 2/3 della generazione fotovoltaica (158 TWh) in autoproduzione. A questi si aggiungono circa 7 TWh di biomassa in autoproduzione nel settore domestico e 25 TWh nel settore industriale. In particolare, si prevede che determinati settori industriali (carta, alimentare, legno) convertano interamente la domanda energetica in biomassa avendone facile accesso. Pur non programmabile la generazione da fotovoltaico, soprattutto se accompagnata da infrastrutture di accumulo (batterie e impianti a pompaggio) **sarà facilmente prevedibile.**

Periodi prolungati di diminuzione dell’irraggiamento saranno gestiti attraverso politiche sulla domanda (segnali di prezzo) e l’entrata in esercizio di impianti a gas che forniranno la riserva del sistema (ricaricando gli accumuli) senza contributi percentuali rilevanti sul totale della generazione elettrica (<5%).

Al 2030, le emissioni di CO2 del parco termoelettrico italiano pur a fronte di un incremento della domanda elettrica del 20% al 2030 potrebbero essere contenute a 55 Mt, con una riduzione del 50% rispetto alle attuali (~60% rispetto al 1990). L’infrastruttura di impianti a ciclo combinato a gas esistente sarebbe sufficiente a soddisfare la domanda di rete al 2030 non rinnovabile (148TWh), senza necessità di investimenti in nuovi impianti. Sempre al 2030 non si prevede ricorso a carbone. La generazione elettrica a gas sarebbe sostanzialmente equivalente a quella odierna. Il prezzo di generazione termoelettrico sarà fondamentalmente condizionato dalle policy esistenti più che dal valore del gas naturale la cui domanda, pur invariata nel settore termoelettrico, sarà fortemente ridotta dalla riduzione dei consumi finali in tutti i settori.

Al 2050 le emissioni di CO2 del settore termoelettrico saranno limitate a circa 5 Mt legato agli interventi di riserva di centrali a gas. Priorità al ricorso al carbon capture and storage (CCS) dovrà essere data alle emissioni dei processi industriali.

Si tratta evidentemente di una delle possibili descrizioni del mercato elettrico compatibile agli obiettivi di policy della Roadmap. Percentuali, tecnologie e assetti diversi saranno al 2050 l’esito delle variabili tecnologiche, sociali ed economiche oggi non prevedibili. Tuttavia è possibile anche in questo ambito iniziare ad isolare quelle che appaiono le più probabili caratteristiche del sistema elettrico futuro in maniera tale da dare un supporto al lavoro di policy per una loro progressiva integrazione nei mercati energetici contemporanei.

Questa ci sembrano:

- forte penetrazione delle fonti non programmabili che renderanno indispensabili investimenti negli accumuli: batterie ed idroelettrici a bacino;
- ridefinizione delle regole dei mercati elettrici. Il solare fotovoltaico pur se non programmabile è facilmente prevedibile. Sarà indispensabile ridefinire le regole e i tempi del dispacciamento e della riserva;
- marcata penetrazione dell’autoproduzione con l’installazione di impianti sulle reti di distribuzione e l’ausilio dei capitali privati diffusi;
- completo ribaltamento del profilo della domanda di rete giornaliera con una prevalenza della domanda nelle ore notturne;
- centralità delle reti della futura infrastruttura elettrica, delle smart grid in
particolare per gestire e integrare al meglio sulla rete di distribuzione gli apporti delle diverse fonti rinnovabili e degli accumuli, alle reti di trasmissione nazionali e transnazionali per facilitare i flussi della generazione rinnovabile in eccesso o difetto nelle varie parti del mercato europeo.

Implicazioni per la policy

Il lavoro raccoglie diverse raccomandazioni di policy in cinque macro argomenti che ci sembrano di primaria importanza per attuare la Roadmap 2050

- l’adozione di un piano energetico di lungo periodo
- l’introduzione di una struttura amministrativa funzionale agli obiettivi
- l’adozione di una fiscalità coerente con gli obiettivi
- l’adozione di una strategia intelligente e coraggiosa per l’efficienza energetica
- la riforma del sistema elettrico ad immagine delle fonti rinnovabili.

Piano energetico 2050

L’adozione di un obiettivo ambizioso di riforma dei mercati energetici, nei termini richiesti dall’Europa, implica la necessità di dotarsi di un piano energetico nazionale di lungo periodo coerente con le politiche energetiche europee in cui esplicitare gli indirizzi generali in tema di energia e cambiamenti climatici. Il piano energetico serve a dare un indirizzo agli operatori del settore e ai policy makers nei diversi livelli della macchina amministrativa e a identificare un percorso di massima in termini di costi e di strumenti da adottare. Il piano serve a definire i contesti, identificare le risorse, delineare le norme entro i quali si chiede agli attori dei mercati di indirizzare i propri investimenti, la propria ricerca, la formazione, gli interessi. Il piano serve a fissare dei paletti entro i quali le decisioni che riguardano l’energia devono dimostrare la propria coerenza. **Niente è dannoso per le imprese e per l’economia quanto il repentino cambio di rotta delle politiche.**
Un’amministrazione pubblica consapevole dei cambiamenti climatici

Gli obiettivi indicati dalla Roadmap 2050 non sono né scontati né di facile attuazione. Un tema importante di policy da affrontare è quella di dotare il paese di una struttura di governance ai diversi livelli di sussidiarietà funzionale al raggiungimento degli obiettivi energetico-ambientali.

Energia e ancor più clima sono temi trasversali a diverse attività pubbliche. A oggi manca una rappresentanza istituzionale che abbia come obiettivo quello di promuovere una politica energetica in maniera coerente con gli obiettivi di riduzione delle emissioni di CO2. La gestione politica e amministrativa di energia e clima a livello centrale ricadono su due diversi Ministeri e a livello locale non esiste una struttura in grado di promuovere tali obiettivi. La macchina pubblica è costruita su altri presupposti e altre priorità. Sarà importante dotare la macchina amministrativa di una struttura funzionale al raggiungimento degli obiettivi. Senza una chiara rappresentanza amministrativa del tema clima-energia difficilmente emergeranno nella macchina pubblica le capacità, le professionalità e un punto di vista energetico-climatico coerente con la politica europea. A fronte dell’adozione di un piano energetico al 2050 sarà importante dare un mandato chiaro a una specifica struttura che abbia come core business la politica climatica.

Una fiscalità coerente con la politica climatica

La fiscalità costituisce il 43\% del Pil italiano. È impensabile ridurre dell’80-95\% le emissioni di CO2 se tale 43\% non lavora nella stessa direzione degli obiettivi di

policy. E’ importante mettere in campo un percorso di coerenza della fiscalità senza aumentare l'imposizione fiscale, che determinerebbe una diminuzione del consenso alle politiche climatiche, ma semplicemente identificando e correggendo le contraddizioni oggi presenti nella fiscalità e, in un secondo tempo, istituendo meccanismi fiscali preposti al raggiungimento degli obiettivi energetico-ambientali.

È necessaria una rilettura della fiscalità che identifichi, correggendole, le spinte opposte alla promozione dell’efficienza, delle tecnologie e delle pratiche carbon neutral. Tale rilettura non implica maggiori o minori entrate per lo Stato ma semplicemente elimina le contraddizioni tra la fiscalità e le politiche per il clima. Una tale lettura potrà essere fatta unicamente da una struttura che abbia in testa il punto di vista energetico-climatico e non il dedalo di esenzioni e complicazioni connesse all’attuale sistema fiscale nazionale.

Un successivo passaggio potrebbe quindi riguardare l’elaborazione di una fiscalità ambientale più propriamente orientata agli obiettivi della Roadmap. Sono molti i possibili esempi e proposte in tal senso. La possibilità di introdurre una fiscalità sui prodotti in relazione al loro contenuto di CO2 nelle diverse fasi di processo, l’ICE (imposta carbonio emesso) potrà essere presa in considerazione in alternativa o in parziale sostituzione dell’attuale IVA. Al pari l’introduzione dell’IMU potrebbe prevedere una diversa imposizione a seconda dell’efficienza energetica dell’edificio. Tale meccanismo andrebbe da subito introdotto nelle case destinate alla locazione in maniera tale da incentivare la penetrazione dell’efficienza energetica in un settore altrimenti difficile da intercettare.

\[^8\] Si fa riferimento a “Total receipts from taxes and social contribution sul PIL Italia 2010”, Eurostat
Una strategia efficiente e coraggiosa per l’efficienza energetica

Tali provvedimenti andrebbero coordinati nell’ambito di un obiettivo di efficienza energetica in grado di ridurre i consumi finali nell’ordine del 40% al 2050 rispetto ai consumi odierni. Infatti, dall’analisi effettuata risulta come sia l’efficienza energetica a rappresentare il cardine di una politica climatica efficace. Si tratta di introdurre meccanismi in grado di rendere strutturale il **decoupling** tra PIL e domanda energetica finale.

Grande importanza dovrà essere data all’efficienza energetica nell’amministrazione pubblica che si dovrà dotare di un piano specifico per l’efficienza energetica. **Le attuali regole per i bilanci delle amministrazioni pubbliche non permettono, all’interno del patto di stabilità, il ricorso al debito per il finanziamento di interventi in efficienza energetica anche se tale indebitamento viene compensato dalle minori spese in energia negli anni futuri.**

Le proposte legislative circolate di incentivazione delle FER termiche e dell’efficienza energetica potrebbero finalmente introdurre un meccanismo maggiormente favorevole per la promozione dell’efficienza energetica nell’amministrazione pubblica di fatto esclusa dal meccanismo del 55%. Tuttavia, il valore economico della taglia degli interventi dovrrebbe essere di una scala sufficientemente grande da includere progetti di dimensione adeguata ai servizi pubblici oggetto degli interventi (scuole, ospedali, uffici di grandi metrature in edifici storici).

Inoltre sarà utile prestare particolare attenzione alla conversione energetica degli edifici introducendo obiettivi annuali di riqualificazione energetica (2.5% all’anno), sia per il settore privato che per l’amministrazione pubblica. Quindi, data la particolarità del patrimonio artistico italiano che non permetterà l’ottimizzazione energetica in molti edifici sarà importante fissare gli standard di maggiore efficienza per la costruzione di nuove abitazioni anche anticipando la normativa europea.

La realizzazione dello scenario proposto dovrà necessariamente prevedere l’elaborazione di uno strumento specifico di promozione del trasporto elettrico. Sia attraverso meccanismi d’incentivazione diretta che attraverso la revisione delle detrazioni fiscali del trasporto per le imprese.

Un sistema elettrico a somiglianza delle fonti rinnovabili

In ultimo la **policy** dovrà farsi promotrice di una progressiva riforma dei mercati elettrici le cui regole e le cui strutture dovranno necessariamente diventare funzionali ad un approvvigionamento sempre più composto da impianti da fonte rinnovabile. Priorità dovrà essere data allo sviluppo dei sistemi d’accumulo, al potenziamento delle reti e a un sistema di remunerazione della capacità rinnovabile.

Il sistema delle aste appaia un meccanismo adeguato per l’introduzione progressiva di capacità rinnovabile nel sistema elettrico. Esso tuttavia deve essere inserito in una visione di lungo periodo che ne dimostri la coerenza con gli obiettivi energetici nazionali e soprattutto fornisca delle garanzie agli operatori sulla regolazione del settore. Con i certificati verdi la quota d’obbligo forniva la garanzia di realizzazione degli impianti. Con le aste ci sono due possibili rischi: che l’offerta d’impianti sia inferiore alla domanda e che si instaurino posizioni dominanti di singoli
operatori che di fatto vanificano l’efficacia economica del meccanismo. Occorre compensare queste caratteristiche dei sistemi d’asta. Migliorare la concorrenza nelle offerte, soprattutto da parte di operatori internazionali, passare attraverso una più trasparente ed efficiente procedura autorizzativa e una diminuzione degli oneri burocratici e amministrativi. Quindi risulta indispensabile fornire garanzie di lungo periodo sugli aspetti sempre più prioritari dei sistemi elettrici: le regole del dispacciamento, del bilanciamento, il programma sugli accumuli, le intenzioni nel gestire la riserva e l’eventuale gestione economica dei distacchi.

Lo sviluppo delle rinnovabili renderà il mercato sempre più un mercato della capacità di lungo periodo (gestita con le aste) al quale si affiancherà un mercato del dispacciamento orario in cui entreranno a fare parte gli impianti rinnovabili programmabili, i meccanismi di accumulo e la gestione intelligente della domanda.

Lo scenario proposto introdurrà forti pressioni sull’ambiente dovuto allo sviluppo delle infrastrutture necessarie alla trasformazione dei mercati elettrici: reti, accumuli, sviluppo di impianti rinnovabili. Il ricorso all’autoproduzione potrebbe favorire uno sviluppo delle infrastrutture nelle aree urbane, industriali e comunque già fortemente antropizzate.

Per favorire l’autoproduzione sarà necessario introdurre una normativa che permetta la fornitura di più utenze all’interno di una piccola rete di utenze. La promozione dell’autoproduzione di piccola scala ha l’enorme vantaggio di promuovere la partecipazione capillare di capitali privati nella trasformazione dei sistemi elettrici. Essa va adeguatamente supportata non unicamente con incentivi economici ma soprattutto con disposizioni di regolazione ed efficienza burocratica.

La promozione della co-fornitura del servizio elettrico sembra emergere come uno strumento importante di partecipazione e responsabilizzazione del cittadino sui temi energetico ambientali.
1 Gli scenari di lungo periodo per rinnovabili

In questa sezione vengono raccolti i maggiori documenti di policy e gli studi più significativi che si pongono come obiettivo la decarbonizzazione dei sistemi energetici in Europa e la completa penetrazione delle fonti rinnovabili nel settore elettrico al 2050. Una seconda parte del capitolo analizzerà in maniera sintetica l’attuale pacchetto di normative esistente e in fase di elaborazione a livello europeo, finalizzato agli obiettivi 2020.

Il capitolo ha due finalità:

- la prima fornire una documentazione autorevole e di confronto allo scenario sviluppato da REF-E per WWF Italia. Nello sviluppo dello scenario, capitolo 2 del rapporto, il testo sottolineerà gli scostamenti delle valutazioni REF-E rispetto agli studi e ai documenti di policy della Commissione Europea, motivandone le diverse assunzioni nel contesto Italiano.

- la seconda consiste nel fare un punto sulle politiche introdotte dall’Unione Europea al 2020 ed elaborate dagli Stati nazionali più intraprendenti nell’anticipare strumenti di regolazione energetico-climatici al 2050: UK e Germania in particolare. La rassegna offre spunti per le raccomandazioni di policy oggetto dell’ultimo capitolo del rapporto. Data la centralità dell’efficienza energetica per raggiungere gli obiettivi di lungo periodo uno spazio importante nel testo è stato dedicato allo specifico di questo tema.

1.1 La Roadmap 2050

Nel 2009 l’Unione Europea si è posta l’obiettivo di ridurre le proprie emissioni di gas serra dell’80-95% entro il 2050 rispetto ai livelli del 1990, nel contesto delle riduzioni che i paesi sviluppati devono realizzare collettivamente secondo quanto definito dal Gruppo intergovernativo sui cambiamenti climatici.

La realizzazione di un processo di transizione verso un’economia a basse emissioni di carbonio efficace in termini dei costi comporta la necessità di pianificare il percorso economico ed energetico dell’Unione dei prossimi anni.

Nel 2011 la “Roadmap 2050” della Commissione ha proposto una tabella di marcia per le prospettive d’azione fino al 2050 che consentirà all’UE di conseguire l’obiettivo di riduzione concordato preservando e supportando la competitività dell’economia. La Commissione ha definito una serie di tappe principali per verificare il rispetto dei tempi per il raggiungimento degli obiettivi, evidenziando le necessità di investimento e le opportunità esistenti nei vari settori.

Sulla base dei vari scenari analizzati risulta che un sentiero efficace dal punto di vista dei costi comporterà una riduzione delle emissioni di carbonio.

9 Consiglio Europeo, 29-30 ottobre 2009, conclusioni della Presidenza del Consiglio Europeo (15265/1/09 REV1).
10 La decisione del Consiglio Europeo è conforme alla posizione approvata dai leader mondiali negli accordi di Copenhagen e di Cancun, che prevedono l’impegno di elaborare strategie di sviluppo a lungo termine a basse emissioni di carbonio. Alcuni Stati membri si sono già mossi in questa direzione o sono in procinto di farlo, in particolare fissando obiettivi di riduzione delle emissioni per il 2050.
emissioni rispetto ai livelli del 1990 del 25% entro il 202012, del 40% entro il 2030 e del 60% entro il 2040. \textbf{Tale approccio implicherà, rispetto al 1990, riduzioni annue di circa l’1% fino al 2020, dell’1,5% tra il 2020 e il 2030, e del 2% negli ultimi due decenni fino al 2050, con un abbattimento delle emissioni che aumenterà nel tempo grazie alla disponibilità di una più ampia gamma di tecnologie con un buon rapporto costi-efficacia.

Tutti i settori dovranno contribuire allo sforzo di riduzione delle emissioni in base al proprio potenziale tecnologico ed economico. La Commissione ha esaminato una serie di interventi e scenari per i principali settori economici basati su diversi tassi di innovazione tecnologica e dei prezzi dei combustibili fossili, arrivando alla formulazione dei risultati riportati in Tabella 1.

\textbf{1.1.1 Il settore energetico}

Il settore energetico ha il maggiore potenziale di riduzione delle emissioni, e si potrà arrivare al quasi totale abbattimento delle emissioni entro il 2050. Al 2030 il settore energetico prevede delle riduzioni comprese tra il 54 e il 68%.

La tabella di marcia per l’energia 205013, presentata nel dicembre 2011 dalla Commissione, analizza diversi possibili scenari di emissione fornendo una valutazione delle conseguenze di un sistema energetico a bassa intensità di carbonio e identificando il quadro strategico necessario per realizzarlo. Gli scenario presentati sono 5 in aggiunta a due scenari \textit{business as usual}. Gli scenari, concepiti combinando le principali politiche che concorrono alla riduzione delle emissioni (efficienza energetica, energia rinnovabile, nucleare, tecnologie CCS), hanno portato all’individuazione degli

\begin{tabular}{|l|c|c|c|}
\hline
\textbf{Settori} & \textbf{2005} & \textbf{2030} & \textbf{2050} \\
\hline
Energetico & -7% & da -54% a -68% & da -93% a -99% \\
Industria & -20% & da -34% a -40% & da -83% a -87% \\
Trasporti* & 30% & da +20% a -9% & da -54% a -67% \\
Residenziale e servizi & -12% & da -37% a -53% & da -88% a -91% \\
Agricoltura & -20% & da -36% a -37% & da -42% a -49% \\
Altre emissioni diverse dal CO2 & -30% & da -72% a -73% & da -70% a -78% \\
\hline
\textbf{Totale} & -7% & da -40% a -44% & da -79% a -82% \\
\hline
\end{tabular}

* Incluso il trasporto aereo, escluso il trasporto marittimo

\textit{Fonte: Roadmap 2050, Commissione Europea}

12 Questo obiettivo potrà essere raggiunto con la piena realizzazione delle politiche esistenti, comprendendo, oltre all’impegno vincolante di portare al 20% la quota di energie rinnovabili, l’impegno non ancora vincolante di aumentare del 20% l’efficienza energetica entro il 2020, il che presuppone la piena attuazione delle prescrizioni del “piano di efficienza energetica 2011” dell’8 marzo 2011, dettagliate quantitativamente nella “proposta di Direttiva sull’efficienza energetica” del 22 giugno 2011.

13 “Energy Roadmap 2050”, COM(2011) 885/2; la comunicazione della Commissione è accompagnata da un valutazione dell’impatto delle diverse opzioni di \textit{policy} e dei relativi scenari.
Obiettivo 2050 – Un rapporto REF-E per WWF Italia

Elementi cardine e dei cambiamenti strutturali necessari nel processo di decarbonizzazione del sistema energetico comunitario (Tabella 2).

Tabella 2. Scenari Energy Roadmap 2050: principali andamenti

<table>
<thead>
<tr>
<th>Scenari di decarbonizzazione</th>
<th>Scenari business as usual (BAU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta penetrazione delle fonti rinnovabili</td>
<td>Bassa penetrazione del CCS</td>
</tr>
<tr>
<td>Alta penetrazione del nucleare</td>
<td>Diversificazione delle fonti tecnologiche (CCS e nucleare)</td>
</tr>
<tr>
<td>BAU (scenario di riferimento)*</td>
<td>BAU + misure addizionali**</td>
</tr>
<tr>
<td>Domanda di energia primaria</td>
<td>Mtep</td>
</tr>
<tr>
<td>Mtep</td>
<td>1826</td>
</tr>
<tr>
<td>di cui fonti rinnovabili</td>
<td>125</td>
</tr>
<tr>
<td>Variazione % dal 2005</td>
<td>181.6%</td>
</tr>
<tr>
<td>% rinnovabili su energia primaria</td>
<td>6.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domanda di energia finale</th>
<th>Mtep</th>
<th>Variazione % dal 2005</th>
<th>di cui energia elettrica, Mtep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mtep</td>
<td>1174</td>
<td>1221</td>
<td>1157</td>
</tr>
<tr>
<td>di cui energia elettrica</td>
<td>238</td>
<td>355</td>
<td>340</td>
</tr>
<tr>
<td>Variazione % dal 2005</td>
<td>49%</td>
<td>43%</td>
<td>16%</td>
</tr>
<tr>
<td>% elettricità su domanda finale</td>
<td>29.1%</td>
<td>29.4%</td>
<td>37.3%</td>
</tr>
</tbody>
</table>

* Include i trend correnti e le politiche europee energetico/ambientali adottate fino a marzo 2011
** Include misure addizionali in tema di efficienza energetica, infrastrutture, mercato interno, nucleare, tassazione energetica, trasporti, sulla base degli sviluppi successivi a marzo 2011
Fonte: Impact Assessment Energy Roadmap 2050, Commissione Europea

Nei 5 scenari di “decarbonizzazione” le forme di energia rinnovabile arriveranno a coprire tra il 40 e il 60% della domanda di energia primaria, a fronte di risparmi di energia primaria che vanno dal 32% a oltre il 40%.

Un ruolo centrale sarà svolto dall’elettricità, che sostituirà, almeno parzialmente, i combustibili fossili nei settori del trasporto e del riscaldamento, e in percentuale il peso sulla domanda finale di energia aumenterà significativamente, arrivando al 36-39% nel 2050.

Nei cinque scenari proposti il contributo dell’energia nucleare al 2050 varia tra il 2.6% e il 17%. Il CCS è prevalentemente destinato al sequestro delle emissioni industriali di processo.

La Commissione stima che la quota delle tecnologie a bassa di carbonio nel mix di produzione elettrica passerà dal 45% del 2009 a circa il 60% nel 202014, al 75-80% nel 2030 e infine arriverà quasi al 100% nel 2050.

1.1.2 Il settore trasporti

Nel settore dei trasporti l’abbattimento delle emissioni sarà dovuto a tre fattori principali: l’incremento dell’efficienza dei veicoli, il continuo aumento dell’utilizzo di energia “pulita” grazie a nuovi carburanti e sistemi di propulsione, il migliore utilizzo delle reti di trasporto e un funzionamento più sicuro grazie allo sviluppo dei sistemi di

14 In particolare grazie all’obiettivo al 2020 concernente le energie rinnovabili.
trasporto e di comunicazione. Il miglioramento dell’efficienza dei veicoli alimentati a fonti fossili tradizionali continuerà a essere lo strumento principale almeno fino al 2025.

Dal 2030 circa le emissioni potranno essere riportate al di sotto dei livelli del 1990 grazie alla combinazione di misure quali meccanismi e segnali di prezzo atti a far fronte alle congestioni e all’inquinamento atmosferico, una pianificazione urbanistica oculata, e il potenziamento dei trasporti pubblici; inoltre le norme in materia di emissioni CO2 e fiscalità15 “intelligente” porteranno a una maggiore efficienza e ad una migliore gestione della domanda, favorendo lo sviluppo e la diffusione di tecnologie e veicoli puliti. Il ricorso a biocarburanti, secondo la Commissione Europea, rappresenta un’importante alternativa soprattutto nei settori dell’aviazione e dei veicoli pesanti, con una forte crescita dopo il 2030, ma se l’elettrificazione non fosse realizzata su larga scala, il ruolo dei carburanti alternativi dovrà essere rafforzato, con conseguenze negative sulla riduzione delle emissioni, sulla biodiversità e sull’ambiente in generale.

1.1.3 Residenziale e servizi

Il settore residenziale e dei servizi offre delle buone possibilità di riduzione delle emissioni a breve termine e a costi relativamente contenuti per quanto concerne le prestazioni energetiche degli edifici.

In particolare, risulterà importante conseguire l’obiettivo definito dalla Direttiva sulla prestazione edilizia del 201016, in base alla quale il consumo energetico dei nuovi edifici costruiti a partire dal 2021 dovrà essere prossimo allo zero17.

1.1.4 Industria

Nel settore industriale l’utilizzo di impianti e processi industriali più efficienti sotto il profilo energetico e delle risorse, un maggiore ricorso al riciclaggio e l’impiego di soluzioni tecnologiche avanzate per la riduzione delle emissioni potranno fornire un contributo decisivo, permettendo di dimezzare le emissioni dei settori ad alta intensità energetica, ma sarà necessario

15 Il tema della fiscalità verrà meglio sviluppato successivamente.

17 I costi supplementari che ciò comporterà saranno compensati dai risparmi di combustibile realizzati. La ristrutturazione del parco immobiliare esistente, e in particolare il finanziamento dei necessari investimenti comporteranno invece un maggior grado di complessità.
elaborare delle tabelle di marcia specifiche in collaborazione con i soggetti economici interessati. Dopo il 2035 dovrebbe inoltre essere esteso su ampia scala il ricorso al CCS, in particolare per le emissioni di settori dell’acciaio e del cemento, e saranno necessari ingenti investimenti.

Le politiche agricole dovranno puntare su opzioni quali incrementi sostenibili dell’efficienza, l’uso efficiente dei fertilizzanti, la biogassificazione e una migliore gestione del concime organico, foraggi di migliore qualità, la diversificazione e la commercializzazione della produzione a livello locale, una maggiore produttività del bestiame e l’ottimizzazione dei benefici dell’agricoltura estensiva; grazie al perfezionamento delle pratiche agricole e forestali si potrà rafforzare la capacità del settore di preservare e catturare il carbonio nei suoli e nelle foreste.

1.1.5 Agricoltura

Il settore agricolo dovrà affrontare congiuntamente due importanti questioni: la sicurezza dell’approvvigionamento alimentare mondiale18 e la lotta contro il cambiamento climatico. In base alle proiezioni nel 2050 il settore agricolo rappresenterà un terzo delle emissioni totali dell’UE, cioè una quota di tre volte superiore a quella attuale, e il suo impatto sulla politica climatica è perciò destinato ad aumentare.

18 Nel 2050 la popolazione terrestre potrà arrivare a 9 miliardi di individui.
1.2 L’Energy Report WWF

La fattibilità tecnico-economica di un sistema energetico globale (quasi) completamente alimentato da fonti rinnovabili entro il 2050, è stata analizzata dal WWF tramite uno studio commissionato a Ecofys, società di consulenza specializzata in efficienza energetica, energie rinnovabili e cambiamento climatico.

Lo scenario Ecofys al 2050 evidenzia come il 95% dell’energia potrà essere fornita da fonti sostenibili in maniera efficace ed efficiente. L’analisi Ecofys parte dalla stima della domanda e offerta energetica al 2050 basate su trend storici e prospettive di crescita demografica ed economica, e bilanciate secondo il seguente ordine di priorità tra le fonti:
1. energie rinnovabili diverse dalle biomasse
2. biomasse, fino al potenziale sostenibile
3. fonti tradizionali (fossili e nucleare).

Lo scenario è inoltre basato sui seguenti punti cardine:
- efficienza energetica
- elettrificazione
- diversificazione delle fonti sostenibili utilizzabili sulla base delle potenzialità tecniche, fisiche ed economiche
- sostenibilità delle bioenergie.

I sentieri delineati da Ecofys per i vari settori dell’economia sono ambizioni ma fattibili, e nel lungo periodo comportano dei notevoli vantaggi in termini di costo rispetto a uno scenario business as usual (BAU), in quanto gli ingenti investimenti iniziali verranno più che compensati dai risparmi in termini di costo dell’energia. Nel complesso si prospetta una sostanziale crescita della domanda energetica mondiale fino al 2020, mentre successivamente si seguirà un sentiero di decrescita che, grazie al più efficiente utilizzo delle fonti energetiche e alla graduale modificazione delle abitudini di consumo, porterà la domanda 2050 a un livello non di molto inferiore a quello raggiunto nel 2000 (Tabella 3).

<table>
<thead>
<tr>
<th>Settore/Fonte</th>
<th>2000</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energia elettrica totale (Mtep)</td>
<td>1092</td>
<td>3043</td>
</tr>
<tr>
<td>Eolico onshore</td>
<td>1%</td>
<td>20%</td>
</tr>
<tr>
<td>Eolico offshore</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>Moto ondoso e maree</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>Fotovoltaico</td>
<td>0%</td>
<td>29%</td>
</tr>
<tr>
<td>Solare a concentrazione</td>
<td>0%</td>
<td>17%</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>17%</td>
<td>12%</td>
</tr>
<tr>
<td>Geotermoellettrico</td>
<td>0%</td>
<td>4%</td>
</tr>
<tr>
<td>Biomasse</td>
<td>0%</td>
<td>13%</td>
</tr>
<tr>
<td>Carbone</td>
<td>40%</td>
<td>0%</td>
</tr>
<tr>
<td>Gasnaturale</td>
<td>19%</td>
<td>0%</td>
</tr>
<tr>
<td>Petrolio</td>
<td>9%</td>
<td>0%</td>
</tr>
<tr>
<td>Nucleare</td>
<td>14%</td>
<td>0%</td>
</tr>
<tr>
<td>Industria (elettricità esclusa) (Mtep)</td>
<td>1521</td>
<td>1409</td>
</tr>
<tr>
<td>Solare a concentrazione (calore)</td>
<td>0%</td>
<td>15%</td>
</tr>
<tr>
<td>Geotermico</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>Biomasse</td>
<td>1%</td>
<td>59%</td>
</tr>
<tr>
<td>Combustibili fossili</td>
<td>98%</td>
<td>21%</td>
</tr>
<tr>
<td>Edifici (elettricità esclusa) (Mtep)</td>
<td>1856</td>
<td>576</td>
</tr>
<tr>
<td>Solare termico</td>
<td>0%</td>
<td>52%</td>
</tr>
<tr>
<td>Geotermico</td>
<td>0%</td>
<td>35%</td>
</tr>
<tr>
<td>Biomasse</td>
<td>43%</td>
<td>13%</td>
</tr>
<tr>
<td>Combustibili fossili</td>
<td>57%</td>
<td>0%</td>
</tr>
<tr>
<td>Trasporto (elettricità esclusa) (Mtep)</td>
<td>2059</td>
<td>1213</td>
</tr>
<tr>
<td>Biomasse</td>
<td>1%</td>
<td>100%</td>
</tr>
<tr>
<td>Combustibili fossili</td>
<td>99%</td>
<td>0%</td>
</tr>
<tr>
<td>Totale complessivo (Mtep)</td>
<td>6528</td>
<td>6241</td>
</tr>
</tbody>
</table>

Fonte: The Energy Report WWF, 2011

19 Utilizzate dove non sarà possibile utilizzare altre fonti, cioè sostanzialmente nei processi industriali che richiedono temperature particolarmente elevate e per le categorie di trasporti per i quali non è possibile utilizzare l’elettricità.
Nel settore industriale il consumo di energia finale segue il trend della domanda di energia globale, con una forte crescita fino al 2020, per poi tornare al 2050 ai livelli del 2000. L’energia elettrica vedrà aumentare solo minimamente la propria quota sui consumi complessivi, mentre i combustibili fossili non sostituibili avranno un peso solo di poco inferiore rispetto al 2020.

Per quanto concerne la domanda energetica legata agli edifici, e quindi sostanzialmente la richiesta energetica dei settori residenziale e commerciale, Ecofys prospetta un notevole aumento dell’utilizzo di elettricità, il cui apporto assoluto in termini di energia finale triplicherà tra il 2000 e il 2050, mentre in termini relativi il 70% della richiesta energetica degli edifici sarà soddisfatta tramite energia elettrica. Il forte peso dell’elettricità al 2050 è dovuto all’ipotesi di un forte sviluppo delle pompe di calore, e all’ipotesi di un deciso aumento dei dispositivi e apparecchi elettrici, dell’illuminazione e dei sistemi di cottura elettrici. Questo trend sarà però controbilanciato da una drastica riduzione della domanda di calore prodotto tramite altre fonti o fornito direttamente agli edifici (ad esempio tramite sistemi di teleriscaldamento), e al 2050 la domanda energetica complessiva degli edifici sarà lievemente inferiore a quella registrata nel 2000.

Il settore trasporti vedrà il più importante calo della domanda di energia grazie a un processo di razionalizzazione ed efficientamento dell’attività\(^\text{20}\), nonostante si prospetti un importante aumento dei volumi. L’energia elettrica avrà un ruolo centrale nel trasporto su strada, e aumenterà il suo peso grazie anche all’aumento del trasporto su rotaia, mentre per il trasporto via mare e via cielo sarà necessario il ricorso sostanziale ai biocombustibili.

\(^{20}\text{Grazie sia al miglioramento dell’efficienza energetica dei mezzi che al cambiamento delle abitudini.}\)
1.3 Obiettivi e tabelle di marcia nazionali: Germania e Regno Unito

1.3.1 Germania: gli obiettivi del governo

Con l’adozione dell’”Energy Concept”21 del settembre 2010 il governo federale tedesco ha delineato la politica energetica del paese fino al 2050, fissando i principali obiettivi e le strategie energetiche di lungo termine soprattutto in merito alle energie rinnovabili, all’efficienza energetica ed allo sviluppo delle reti elettriche.

A seguito del disastro nucleare di Fukushima il ruolo assegnato all’energia nucleare è stato notevolmente ridimensionato, e con la chiusura delle sette centrali più vecchie e la decisione di chiudere i restanti impianti entro il 2022, il governo ha adottato un nuovo pacchetto energia22, che integra le misure dell’energy concept e ne accelera l’implementazione, mantenendo inalterati i seguenti obiettivi generali per il settore energetico.

- Emissioni di gas climalteranti: riduzioni del 40% entro il 2020, del 55% entro il 2030, del 70% entro il 2040, e dall’80 al 95% entro il 2050 rispetto ai livelli del 1990, in linea con le indicazioni e gli obiettivi della Roadmap 2050 e dell’Energy Roadmap 2050.
- Consumi di energia primaria: entro il 2020 i consumi dovranno essere del 20% inferiori ai consumi del 2008, e del 50% entro il 2050.
- Consumi energetici finali del settore trasporto: entro il 2020 dovranno essere inferiori a quelli del 2005 del 10%, e del 40% entro il 2050.
- Produttività energetica: dovranno esserci guadagni del 2.1% annuo rispetto ai consumi energetici finali.
- Tasso di rinnovo degli edifici: dall’attuale 1% al 2% annuo sullo stock di tutti gli edifici esistenti. L’obiettivo è arrivare a un parco edifici quasi completamente \textit{climate-neutral}23 entro il 2050, con una riduzione della domanda di energia primaria di circa l’80% al 2050.
- Energie rinnovabili: dovranno rappresentare il 30% dei consumi energetici finali entro il 2030, il 45% entro il 2040 e il 60% entro il 2050.
- Energia elettrica generata da fonti rinnovabili: dovrà essere almeno pari al 35% dei consumi elettrici totali entro il 2020, al 50% entro il 2030, al 65% entro il 2040, e all’80% entro il 2050.

Le politiche e gli obiettivi sull’espansione delle energie rinnovabili e sull’efficienza energetica sono il nucleo della politica energetica tedesca al 2050. Nella produzione di energia elettrica la crescita delle energie rinnovabili dovrà essere combinata con un continuo miglioramento dell’efficienza, con l’ammodernamento e l’espansione delle reti di trasmissione con la costruzione di nuovi impianti e sistemi di accumulo. Si

22 In particolare si fa riferimento all’”Atomic Energy Act” del 6 giugno 2011.

23 Edifici con basse necessità energetiche, e per i quali la domanda energetica rimanente è coperta da fonti rinnovabili.
vuole inoltre garantire l'efficienza dal punto di vista dei costi, con una sempre maggiore integrazione della generazione rinnovabile nel sistema energetico nazionale e un approccio orientato al mercato, portando la produzione rinnovabile di elettricità più in linea con la domanda.

Lo sviluppo delle energie rinnovabili sarà guidato principalmente dalla fonte eolica, attraverso la costruzione di centrali onshore e offshore, e da un uso sostenibile delle bioenergie, e si prospetta un uso crescente delle fonti sostenibili anche per riscaldamento e raffrescamento.

Nel contesto dell'impegno di riduzione delle emissioni ad effetto serra dell’80% entro il 2050 il governo tedesco mette in luce anche il ruolo delle tecnologie di carbon capture and storage (CCS) nei settori industriali ad alta intensità energetica e con forti emissioni (acciaio, cemento, industrie chimiche, raffinerie), e nella generazione elettrica da fonti fossili.

1.3.2 Germania elettricità completamente rinnovabile al 2050

La Federal Environment Agency (FEA) tedesca ha evidenziato, con un documento pubblicato nel luglio 2010, la fattibilità tecnica e ambientale, per il paese, di un sistema di produzione di energia elettrica completamente basato su fonti rinnovabili entro il 2050.

Secondo le proiezioni della FEA nei settori domestico, industriale, nei servizi e nel commercio i consumi energetici finali potranno essere portati dai 1639.4 TWh del 2005 a circa 774.2 TWh nel 2050, con una riduzione del 58%. Negli stessi settori i soli consumi elettrici potranno invece essere portati dai 492 TWh del 2005 a 396 TWh nel 2050, con un riduzione decisamente più contenuta, pari 19%, in quanto si ipotizza un parziale switching dalle fonti fossili alle rinnovabili elettriche.

I consumi elettrici complessivi (compresi il settore trasporti, che peserà per circa 70 TWh, le perdite di rete e di servizi ausiliari) passeranno invece da 564 TWh nel 2005 a 506 TWh nel 2050, con una riduzione del 10%.

L’agenzia ha quindi stimato il potenziale di capacità e produzione elettrica rinnovabile tedesca (Tabella 4) per ogni fonte/tecnologia sulla base di considerazioni tecnologiche e ambientali.

Tabella 4. Potenziali rinnovabili elettriche

<table>
<thead>
<tr>
<th>Fonte</th>
<th>Capacità, GW</th>
<th>Produzione, TWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eolico onshore</td>
<td>60</td>
<td>180</td>
</tr>
<tr>
<td>Eolico offshore</td>
<td>45</td>
<td>180</td>
</tr>
<tr>
<td>Fotovoltaico</td>
<td>275</td>
<td>240</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>5.2</td>
<td>24</td>
</tr>
<tr>
<td>Geotermoelettrico</td>
<td>6.4</td>
<td>50</td>
</tr>
<tr>
<td>Biometano da rifiuti e residui</td>
<td>*</td>
<td>23</td>
</tr>
<tr>
<td>Totale</td>
<td>392</td>
<td>697</td>
</tr>
</tbody>
</table>

* Dipenderà dalle necessità del sistema energetico nazionale

Le fonti rinnovabili risultano quindi potenzialmente in grado di coprire tutto il fabbisogno elettrico nazionale; tuttavia la variabilità della produzione non programmabile (fonti eolica e solare), che costituisce la quasi totalità della capacità potenziale, porterà a situazioni di surplus elettrico nei momenti di elevata produzione, ed a situazioni di disavanzo nei momenti in cui la generazione rinnovabile non sarà in grado di coprire.

24 Autorità federale in materia ambientale.
completamente la domanda elettrica. Nel medio-lungo termine risulterà indispensabile lo sviluppo della capacità di accumulo, come i sistemi di pomaggio per la produzione idroelettrica, e sarà importante ricorrere a meccanismi automatici di controllo e gestione del carico, che permettano di spegnere determinati apparecchi e macchinari elettrici consentendo di minimizzare il carico di picco quando esso eccede la produzione rinnovabile26.

1.3.3 Regno Unito obiettivi e gli ultimi sviluppi normativi

Nel corso degli ultimi anni il Regno Unito ha visto l’approvazione di diversi provvedimenti normativi in tema di legislazione ambientale-energetica di notevole importanza, definendo obiettivi, politiche e traiettorie di lungo periodo in tema di emissioni, energie rinnovabili, ed efficienza energetica.

Con l’approvazione del Climate Change Act27 (CCA) nel novembre 2008 da parte del Parlamento, il Regno Unito ha introdotto l’obiettivo vincolante di ridurre le proprie emissioni di gas effetto serra rispetto ai livelli del 1990 almeno l’80% entro il 2050, con un target intermedio di almeno il 34% al 2020. Il CCA ha introdotto nel paese il primo contesto normativo vincolante al mondo per tracciare l’andamento delle emissioni di gas che possono influire sul cambiamento climatico, con la creazione di un sistema di contabilizzazione delle emissioni, e l’introduzione di una serie di misure atte a ridurle.

In tema di energie rinnovabili il target 2020 fissato per il Regno Unito dalla Direttiva 2009/28/CE28 è del 15% sulla domanda energetica finale, mentre il più lungo periodo gli obiettivi in termini di energie rinnovabili sono guidati dagli obiettivi vincolanti di riduzione delle emissioni. La Roadmap29 sulle energie rinnovabili pubblicata la scorsa estate evidenzia le azioni necessarie in termini di investimenti, di reti, e di sviluppo del mercato per sfruttare le principali tecnologie rinnovabili con le più ampie potenzialità nel contesto nazionale e centrare l’obiettivo 2020 (Tabella 5). Per il 2030 il Committee on Climate Change30 (CCC) ha prospettato la possibilità che per il 2030 l’energia rinnovabile copra circa il 30-45% dei consumi energetici nazionali.

Tabella 5. Stima a produzione rinnovabile al 2020 (TWh)

<table>
<thead>
<tr>
<th>Fonte/tecnologia/settore</th>
<th>Produzione 2020 (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eolico onshore</td>
<td>24-32</td>
</tr>
<tr>
<td>Eolico offshore</td>
<td>33-58</td>
</tr>
<tr>
<td>Elettricita da biomasse</td>
<td>32-50</td>
</tr>
<tr>
<td>Moto ondoso e maree</td>
<td>1</td>
</tr>
<tr>
<td>Calore da biomasse</td>
<td>36-50</td>
</tr>
<tr>
<td>Trasporto</td>
<td>fino a 48</td>
</tr>
<tr>
<td>Pompe di calore*</td>
<td>16-22</td>
</tr>
<tr>
<td>Altri**</td>
<td>14</td>
</tr>
</tbody>
</table>

* Settore non domestico
** Solare, idroelettrico, geotermico, calore per uso domestico

Fonte: UK Renewable Energy Roadmap, 2011

26 Ai fini della gestione della domanda elettrica nei momenti di picco risulterà importante anche il miglioramento delle interconnessioni con i paesi adiacenti ed il continuo sviluppo della rete elettrica nazionale, come evidenziato anche dal Governo tedesco nell’Energy Concept.
27 Climate Change Act, 26 novembre 2008.
30 Organismo indipendente istituito dal Climate Change Act.
In base a uno studio WWF la domanda elettrica del Regno Unito potrebbe essere soddisfatta almeno al 60% attraverso fonti rinnovabili. Il restante 40% circa di energia elettrica potrebbe essere prodotta da gas naturale, utilizzando anche le tecnologie carbon capture and storage (CCS) e attraverso il miglioramento delle interconnessioni di rete. In particolare un adeguato sviluppo della capacità di interconnessione potrebbe portare a livelli ancora più elevati di produzione di elettricità da fonti rinnovabili, arrivando a quasi il 90% della domanda interna, pur mantenendo un’adeguata capacità da fonti tradizionali; gli impianti a gas potrebbero essere usati solo quando la capacità rinnovabile non fosse in grado di coprire la domanda, mentre grazie alle interconnessioni potrebbe essere esportato il surplus di generazione rinnovabile. In questo modo gli obiettivi di riduzione delle emissioni potrebbero essere raggiunti anche senza il ricorso al CCS.

La sola Scozia si è invece posta l’obiettivo di produrre l’equivalente della propria domanda elettrica attraverso fonti rinnovabili entro il 2020\(^3\). Questo obiettivo non corrisponderà ad una dipendenza totale dalle fonti rinnovabili per la produzione di energia elettrica, in quanto sarebbero mantenuti nel mix energetico almeno 2.5 GW di capacità termoelettrica, associata nel tempo a tecnologie di CCS, mentre l’eccesso di produzione rinnovabile verrebbe esportata, arrivando alla totale decarbonizzazione del settore elettrico entro il 2030.

Per la produzione di calore l’obiettivo scozzese al 2020 è di arrivare all’11% delle produzione da fonti rinnovabili, mentre il target complessivo per tutta la domanda energetica (trasporto, calore ed elettricità) è del 30%. Anche in questo caso al centro della politica energetica permane la necessità di garantire un’adeguata capacità di interconnessione.

Per quanto concerne l’efficienza energetica nell’ottobre 2011 è avvenuta l’approvazione definitiva dell’Energy Act\(^3\) (EA). Sono state previste specifiche disposizioni in materia di efficienza energetica nelle abitazioni e negli uffici, e dei miglioramenti al contesto normativo per poter garantire l’implementazione di un sistema energetico a basso contenuto di carbonio e affidabile e per assicurare la competitività del mercato dell’energia. Di seguito si riportano i principali provvedimenti dell’EA.

- **Green Deal.** L’EA ha istituito un meccanismo di finanziamento per gli interventi di miglioramento dell’efficienza energetica\(^3\) delle abitazioni e delle proprietà immobiliari ad uso commerciale, che permette al consumatore di ripagare il costo dell’intervento attraverso un ricarico della propria bolletta energetica. Il riceverà quindi un finanziamento che andrà a pagare attraverso la bolletta, ma allo stesso tempo i guadagni di efficienza porteranno a una riduzione dei costi energetici, evitando di dover sopportare direttamente e anticipatamente i costi dell’intervento. Inoltre il debito è legato

\(^{32}\) Energy Act, 18 ottobre 2011.

\(^{33}\) Gli interventi ammessi devono comportare dei risparmi finanziari attesi uguali o superiori ai costi che verranno imputati in bolletta, e sono necessari altri prerequisiti per accedere al programma.
all’abitazione/ufficio sul quale è stato fatto l’intervento, e non al soggetto che ha richiesto e ottenuto questo particolare finanziamento, per cui in caso di cambio abitazione/ufficio i costi e i benefici economici derivati dall’efficientamento ricadranno sul nuovo proprietario/inquilino, che pagherà la bolletta. I primi accordi di finanziamento di questo genere dovrebbero essere stipulati nell’autunno 2012.

- **Energy Company Obligation (ECO).** È stata disposta la possibilità di istituire un nuovo meccanismo che sostituirà le obbligazioni esistenti in termini di riduzione delle emissioni in capo alle società energetiche, e che termineranno i propri effetti alla fine del 2012. Il meccanismo ECO sosterrà l’implementazione del Green Deal, e sarà focalizzato particolarmente sul finanziamento dei soggetti che hanno più bisogno di supporto finanziario per la realizzazione di interventi di efficienza energetica.

- **Private rented sector.** Da aprile 2016 i proprietari di residenze private non potranno più rifiutare di effettuare interventi di efficientamento energetico richiesti all’affittuario, nel caso in cui l’intervento sia finanziabile attraverso il Green Deal o il sistema ECO. Inoltre dal 2018 non sarà più possibile dare in affitto un’abitazione o un ufficio che non raggiungono degli standard minimi di efficienza energetica.

- **Carbon price floor.** A seguito di una consultazione lanciata dal Ministero dell’economia nel Budget 2011 è stata prevista l’introduzione dal 1 aprile 2013 di un “carbon price floor”, cioè di un prezzo minimo della CO2 crescente nel tempo. Per il 2013 il prezzo sarà pari a circa 16 €/tCO2, per arrivare a 30 €/tCO2 nel 2020 e a 70 €/tCO2 nel 2030. Tali prezzi minimi della CO2 sono stati ritenuti necessari per centrare gli obiettivi ambientali del paese, e dovrebbero favorire il passaggio dall’utilizzo di fonti energetiche meno impattanti in termini di emissioni.

L’applicazione del carbon price floor comporterà un costo aggiuntivo della CO2 rispetto al prezzo derivante dal meccanismo di scambio di quote di emissione comunitario ETS al fine di arrivare al prezzo stabilito dal legislatore del Regno Unito. Tale costo aggiuntivo per i prossimi anni è stato definito dal Budget 2011 ed è pari a 4.94 €/tCO2 per il 2013-2014, pari a 7.28 €/tCO2 per il 2014-2015 e pari a 9.86 €/tCO2 per il 2015-2016, mentre per gli anni successivi verrà fissato dai prossimi Budget.

35 I meccanismi attualmente presenti sono il Carbon Emissions Reduction Target ed il Community Energy Saving Programme.
36 http://www.hm-treasury.gov.uk/consult_carbon_price_support.htm
37 L’introduzione del carbon price floor dal 1 aprile 2013 è stata annunciata nel Budget 2011.
38 In prezzi 2009.
1.4 Il pacchetto clima-energia e gli obiettivi al 2020

Il pacchetto clima-energia è costituito da un insieme di provvedimenti comunitari in materia di energia e cambiamenti climatici, volto a conseguire gli obiettivi che l’UE si è fissata per il 2020:

- ridurre le emissioni di gas effetto serra del 20% rispetto al 1990
- soddisfare almeno il 20% dei consumi finali lordi tramite energie rinnovabili
- ridurre i consumi di energia primaria del 20% rispetto ai consumi tendenziali previsti per il 2020.

I primi due obiettivi hanno carattere vincolante, mentre attualmente l’obiettivo di efficienza energetica al 2020 ha carattere solo indicativo.

Il pacchetto si compone di sei provvedimenti.

1.4.1 Sistema di scambio di quote di emissione (EU ETS): la Direttiva 2009/29/CE

La Direttiva 2009/29/CE regola il sistema comunitario di scambio di quote di emissione dei gas a effetto serra introdotto dalla Direttiva ETS del 2003, per il periodo 2012-2020 (terza fase ETS), ponendo l’obiettivo, per soli i settori inclusi nel sistema, di ridurre le emissioni del 21% nel 2020 rispetto al 2005. Il sistema ETS, avviato nel 2005, costituisce il principale strumento dell’UE nella lotta al cambiamento climatico, ed è un meccanismo “cap and trade”. Fissando un livello desiderato di emissioni (cap) si limita il livello globale delle emissioni autorizzate relative ai settori compresi nello schema, permettendo al contempo di acquistare o vendere delle quote, a seconda della “necessità di emissione” della singola impresa (trade). Alla fine di ciascun anno tutti i soggetti partecipanti hanno l’obbligo di restituire una quantità di premessi di emissione (EUA) pari alle proprie emissioni effettive, pena il pagamento di sanzioni.

Il cap dovrebbe essere tale da portare alla formazione sul mercato di un prezzo dei premessi di emissione, e quindi della CO2, tale da favorire e incentivare il passaggio (switching) a tecnologie e prodotti energetici meno inquinanti.

Il meccanismo è stato finora basato sull’allocazione a titolo gratuito delle quote di emissione consentite alle imprese. A partire dal 2013 la Direttiva 2009/29/CE prevede il passaggio a un sistema di aste per l’acquisto (a titolo oneroso) delle quote. Gli Stati saranno vincolati a utilizzare, almeno in parte, i proventi generati dalle aste per supportare politiche

I settori principali sono termoelettrico, raffinazione, lavorazione di minerali metallici, produzione di ghisa,
e progetti con finalità ambientali. Il sistema ad aste prevede però numerose eccezioni, come l’introduzione progressiva nel settore industriale, e un’ampia deroga per i settori a rischio delocalizzazione (settori carbon leakage).

Il prezzo dei permessi di emissione scambiati sul mercato ha subito un brusco calo a causa della crisi economica: dal 2009 il forte rallentamento dell’attività economica e della produzione industriale ha portato a una situazione di eccesso di offerta di permessi di emissione, con un conseguente forte impatto negativo sul prezzo (Figura 2). Il prezzo è divenuto perciò poco efficace nello svolgere la sua funzione di stimolo all’investimento e allo sviluppo tecnologico di soluzioni energetiche a basso contenuto di CO₂.

1.4.2 La ripartizione degli sforzi di riduzione delle emissioni tra gli Stati membri: la Decisione 2009/406/CE

In base alla Decisione 2009/406/CE ciascuno stato membro è tenuto a limitare le proprie emissioni di gas serra, e a rispettare le percentuali di riduzione minima (o aumento massimo) al 2020 attribuitagli dalla decisione stessa per i settori esclusi dal sistema EU ETS. Le percentuali di riduzione/aumento al 2020 sono basate sulle emissioni registrate dal paese nel 2005, e nel complesso la decisione mira a ridurre del 10% le emissioni prodotte dai settori non ETS, come il trasporto stradale e marittimo e l’agricoltura, contribuendo alla riduzione complessiva del 20% entro il 2020.

Figura 2. Prezzi spot dei permessi di emissione (€/tCO2eq)

![Gráfico de la Figura 2: Prezzi spot dei permessi di emissione (€/tCO2eq)](image-url)

Fonte: Bluenext

Per l’Italia è prevista un riduzione del 13% al 2020, mentre per gli altri grandi paesi membri sono previste le seguenti riduzioni: Germania 14%, Spagna 10%, Francia 14%, Regno Unito 16%. Tutti gli stati membri entrati nella Comunità europea nel corso degli ultimi anni (eccetto Cipro) saranno autorizzati ad aumentare le proprie emissioni entro certi limiti massimi; l’aumento consentito più elevato è stato assegnato alla Bulgaria, che potrà aumentar le proprie emissioni del 20%.

1.4.3 Cattura e stoccaggio di CO$_2$: la Direttiva 2009/31/CE

La Direttiva 2009/31/CE ha istituito un quadro giuridico per lo stoccaggio geologico ecosostenibile di CO$_2$ (CCS). Per le centrali elettriche con una capacità elettrica installata pari almeno a 300 MW che hanno ottenuto la licenza edilizia (o la licenza di esercizio iniziale) dopo l’entrata in vigore della direttiva, deve essere accertata:

- la disponibilità di siti di stoccaggio appropriati
- la fattibilità tecnica ed economica di strutture di trasporto
- la possibilità tecnica ed economica di installare a posteriori le strutture per il CCS.

Se tali condizioni sono soddisfatte, l’autorità competente dovrà riservare un’area sufficiente all’interno del sito per installare le strutture necessarie alla cattura e alla compressione di CO$_2$.

La Direttiva prevede inoltre dei requisiti fondamentali per la selezione dei siti, e l’autorizzazione allo stoccaggio verrà garantita solo a seguito della verifica dell’assenza di rischi per la salute umana e per l’ambiente. Le domande di autorizzazione allo stoccaggio devono essere presentate all’autorità competente dello Stato membro e devono comprendere un set minimo di informazioni. I progetti di autorizzazione allo stoccaggio dovranno essere esaminati dalla Commissione, che potrà esprimere un parere non vincolante.

1.4.4 Gli obiettivi nazionali obbligatori sullo sviluppo delle rinnovabili: la Direttiva 2009/28/CE

La Direttiva 2009/28/CE\(^{47}\) ha stabilito un quadro comune per la promozione dell’energia da fonti rinnovabili e degli obiettivi nazionali vincolanti per garantire che al 2020 almeno il 20% del consumo di energia finale provenga da fonti rinnovabili (Tabella 6). Nel calcolo è stata prevista la possibilità, sotto certe condizioni, di includere l’energia prodotta in paesi terzi.

Tutti gli Stati dovranno inoltre arrivare ad avere nel 2020 una quota minima di energia da fonti rinnovabili nel settore dei trasporti pari al 10% del consumo energetico finale dei trasporti nazionali\(^{48}\).

<table>
<thead>
<tr>
<th>Stato Membro</th>
<th>Obiettivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgio</td>
<td>13.0</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>16</td>
</tr>
<tr>
<td>Repubblica Ceca</td>
<td>13</td>
</tr>
<tr>
<td>Danimarca</td>
<td>30</td>
</tr>
<tr>
<td>Germania</td>
<td>18</td>
</tr>
<tr>
<td>Estonia</td>
<td>25</td>
</tr>
<tr>
<td>Irlanda</td>
<td>16</td>
</tr>
<tr>
<td>Grecia</td>
<td>18</td>
</tr>
<tr>
<td>Spagna</td>
<td>20</td>
</tr>
<tr>
<td>Francia</td>
<td>23</td>
</tr>
<tr>
<td>Italia</td>
<td>17</td>
</tr>
<tr>
<td>Cipro</td>
<td>13</td>
</tr>
<tr>
<td>Lettonia</td>
<td>40</td>
</tr>
<tr>
<td>Lituania</td>
<td>23</td>
</tr>
<tr>
<td>Lussemburgo</td>
<td>11</td>
</tr>
<tr>
<td>Ungheria</td>
<td>13</td>
</tr>
<tr>
<td>Malta</td>
<td>10</td>
</tr>
<tr>
<td>Paesi Bassi</td>
<td>14</td>
</tr>
<tr>
<td>Austria</td>
<td>34</td>
</tr>
<tr>
<td>Polonia</td>
<td>15</td>
</tr>
<tr>
<td>Portogallo</td>
<td>31</td>
</tr>
<tr>
<td>Romania</td>
<td>24</td>
</tr>
<tr>
<td>Slovenia</td>
<td>25</td>
</tr>
<tr>
<td>Repubblica Slovacca</td>
<td>14</td>
</tr>
<tr>
<td>Finlandia</td>
<td>38</td>
</tr>
<tr>
<td>Svezia</td>
<td>49</td>
</tr>
<tr>
<td>Regno Unito</td>
<td>15</td>
</tr>
</tbody>
</table>

Fonte: Direttiva 2009/28/CE

\(^{48}\) Per i trasporti aerei la direttiva prevede una parziale esenzione.
I biocarburanti e i bioliquidi dovranno rispettare una serie di criteri di sostenibilità, garantendo livelli minimi di riduzione delle emissioni rispetto ai combustibili tradizionali, al fine di essere conteggiati nella verifica del rispetto degli obiettivi nazionali e per beneficiare di sostegno finanziario.

Nel progress report di gennaio 2011\(^49\) la Commissione evidenzia che gli obiettivi nazionali indicativi al 2010 fissati dalla direttiva sull’energia elettrica prodotta da fonti rinnovabili\(^50\) e dalla direttiva sui biocarburanti\(^51\), successivamente abrogate dalla direttiva rinnovabili, sono stati raggiunti solo da alcuni stati membri.

Per quanto concerne invece gli obiettivi al 2020 le proiezioni riportate nel report indicano un ritmo di crescita delle energie rinnovabili decisamente più elevato tra il 2010 e il 2020 rispetto agli anni precedenti, e se le previsioni verranno confermate nel tempo, nel 2020 la quota complessiva di energie rinnovabili nell’UE supererà l’obiettivo del 20%.

Per quanto concerne l’Italia, nel Piano di Azione Nazionale per le energie rinnovabili (PAN) 2010, redatto in conformità alla direttiva rinnovabili, il Ministero dello Sviluppo Economico (MSE) la traiettoria indicativa e l’obiettivo della quota di

Figura 3. Produzione elettrica da fonti rinnovabili e consumo elettrico interno lordo (TWh e %)

<table>
<thead>
<tr>
<th>TWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>20</td>
</tr>
<tr>
<td>2004</td>
<td>20</td>
</tr>
<tr>
<td>2005</td>
<td>20</td>
</tr>
<tr>
<td>2006</td>
<td>20</td>
</tr>
<tr>
<td>2007</td>
<td>20</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
</tr>
<tr>
<td>2009</td>
<td>20</td>
</tr>
<tr>
<td>2010</td>
<td>20</td>
</tr>
<tr>
<td>2011*</td>
<td>20</td>
</tr>
</tbody>
</table>

* Prime stime GSE e stime REF-E

Fonte: elaborazioni REF-E su dati Terna e GSE

\(^51\) Direttiva 2003/30/CE del Parlamento europeo e del Consiglio, dell’8 maggio 2003, sulla promozione dell’uso dei biocarburanti o di altri carburanti rinnovabili nei trasporti.
energie rinnovabili al 2020 nei settori:

- riscaldamento e raffreddamento, pari al 15.83%
- elettricità, pari al 28.97%
- trasporti, pari al 10.6%.

Per il 2005 il PAN riporta per i tre settori quote rispettivamente del 2.80%, 16.29%, 0.87%, mentre le stime per il 2010 erano rispettivamente del 6.79%, 17.93%, 3.48%

Per la sola produzione di energia elettrica sono disponibili i dati consuntivi 2010 e le stime per il 2011, che mostrano come l’anno passato la produzione elettrica da fonti rinnovabili abbia raggiunto circa il 23% dei consumi elettrici finali lordi (Figura 3). Questo risultato è legato soprattutto alle forte crescita della capacità e della produzione fotovoltaica tra il 2010 e il 2011, ma anche alla continua crescita della fonte eolica e delle biomasse. I dati provvisori al 2011 evidenziano una crescita della generazione elettrica rinnovabile di 9 TWh al netto dell’idroelettrico. È l’incremento più altro registrato negli ultimi anni.

1.4.5 Riduzione delle emissioni delle autovetture: Regolamento 403/2009

Il pacchetto clima-energia include comprende un provvedimento\(^\text{52}\) che fissa il livello medio di emissioni di CO2 delle autovetture nuove a 130 gCO2/km a partire dal 2012 da ottenere con miglioramenti tecnologici dei motori, e una riduzione di ulteriori 10gCO2/km dovrà essere ricercata attraverso altre soluzioni tecnologiche e al maggiore ricorso ai biocarburanti. Per il 2020 è stato fissato un livello medio delle emissioni del nuovo parco macchine a 95 gCO2/km. All’interno della formula per il calcolo del rispetto dell’obbligo sono introdotti dei meccanismi premiali per l’auto elettrica e la trazione elettrica con emissione inferiore ai 50 g/km. Rimane tuttavia confermata l’impostazione europea a ridurre le emissioni di CO2 nel settore dei trasporti principalmente attraverso miglioramenti dell’efficienza del motore a combustione interna.

1.4.6 Riduzione dei gas a effetto serra nel ciclo di vita dei combustibili: Direttiva 2009/30/CE

Infine il Parlamento ha adottato una direttiva\(^\text{53}\) che fissa specifiche tecniche per i carburanti e un obiettivo di riduzione del 6% delle emissioni di gas serra prodotte durante il ciclo di vita dei combustibili da conseguire entro il 2020, rispetto alla media comunitaria del 2010, attraverso l’utilizzo di biocarburanti e carburanti alternativi e riducendo il rilascio in atmosfera e la combustione in torcia nei siti di produzione. Entro il 2012 la Commissione potrà proporre di rendere obbligatoria una riduzione supplementare del 4%, una volta verificato che l’utilizzo di tecnologie ecocompatibili di CCS e di veicoli elettrici (treni esclusi) possa diminuire ulteriormente del 2% le emissioni, e che l’acquisto di crediti nel contesto del protocollo di Kyoto possa anch’esso consentire una riduzione del 2%.

\(^\text{52}\) Regolamento (CE) n. 443/2009 del Parlamento europeo e del Consiglio, del 23 aprile 2009, che definisce i livelli di prestazione in materia di emissioni delle autovetture nuove nell’ambito dell’approccio comunitario integrato finalizzato a ridurre le emissioni di CO2 dei veicoli leggeri.

\(^\text{53}\) Direttiva 2009/30/CE del Parlamento europeo e del Consiglio, del 23 aprile 2009 , che modifica la direttiva 98/70/CE per quanto riguarda le specifiche relative a benzina, combustibile diesel e gasolio nonché l’introduzione di un meccanismo inteso a controllare e ridurre le emissioni di gas a effetto serra, modifica la direttiva 1999/32/CE del Consiglio per quanto concerne le specifiche relative al combustibile utilizzato dalle navi adibite alla navigazione interna e abroga la direttiva 93/12/CEE.
Box 1. I progressi dell’UE nella riduzione delle emissioni nell’abito degli obiettivi di Kyoto

A seguito dell’emanazione del Protocollo di Kyoto54 l’Unione Europea dei 15 (UE-15)55 si è impegnata a ridurre le proprie emissioni di gas effetto serra (greenhouse gas, GHG)56 dell’8% entro il 2012 rispetto ai livelli del 199057, e l’obbligo complessivo è stato ripartito a livello di singoli Stati membri attraverso il burden sharing agreement58, in base al quale all’Italia è stato assegnato un obiettivo del 6.5%.

Nell’ultimo report59 sui progressi fatti dall’Unione verso gli obiettivi di Kyoto pubblicato dalla Commissione viene evidenziato come l’UE-15 sia sul sentiero giusto per raggiungere il target complessivo stabilito. In base ai dati provvisori 2010 le emissioni UE-15 sono del 10.7%60 inferiori ai livelli dell’anno base, ma non tutti i paesi riusciranno a soddisfare i propri obiettivi nazionali. Per i paesi più a rischio, ovvero Italia, Austria e Lussemburgo, sarà fondamentale il ricorso ai meccanismi di compensazione previsti dallo stesso Protocollo, ai permessi di emissione EU ETS non utilizzati dai nuovi entranti, e ad altre misure di policy.

Tra i paesi UE-15 Germania e Regno Unito pesano per circa un terzo delle emissioni complessive, e la forte riduzione delle emissioni registrata da questi due paesi (rispettivamente -26.3% e -27%) tra il 1990 e il 2009 impatta notevolmente sul risultato complessivo dell’area.

Nel complesso tra il 1990 e il 2009 si è verificato un importante processo di decoupling tra la crescita delle emissioni e crescita del PIL: nel periodo considerato a livello di UE-15 si è infatti registrata una crescita complessiva del PIL del 37% e una riduzione delle emissioni pari al 12.7%, mentre nell’UE-27 il PIL complessivo è cresciuto del 38% e le emissioni sono diminuite del 17.4%.

56 Non sono comprese le emissioni Land Use, Land Use Change and Forestry (LULUCF).
57 L’anno base varia a seconda del paese e del genere di GHG considerato, tuttavia nella maggior parte dei casi è il 1990.
59 “Progress towards achieving the Kyoto objectives”, European Commission, Brussels, 7 ottobre 2011; tale report è corredato da un accompanying document che riporta dati inerenti all’andamento delle emissioni nei vari paesi e per settore.
60 In crescita rispetto al 2009 del 2.3%; grazie a una parziale ripresa dell’economia.
61 In crescita rispetto al dato 2009, pari al 17.4%.
62 In particolare sarà importante arrivare a un prezzo della CO2 che incentivì i processi di switching e favorisca lo sviluppo tecnologico, e centrare l’obiettivo di risparmio energetico attraverso l’approvazione della nuova proposta di direttiva sull’efficienza energetica.
1.5 L’efficienza energetica

Le azioni di risparmio energetico hanno un ruolo centrale nel conseguimento degli obiettivi comunitari al 2020 di riduzione delle emissioni e di quota di rinnovabili sul consumo lordo finale. Una maggiore efficienza energetica porta alla riduzione dei consumi di energia primaria e finale, riducendo, a parità di mix di combustibili, le emissioni di gas serra e rendendo più facile il raggiungimento degli obiettivi in termini di rinnovabili.

Ciononostante il pacchetto clima-energia non comprende provvedimenti rivolti direttamente alla riduzione dei consumi energetici, e il target di riduzione di consumi di energia primaria al 2020 non è vincolante. Tuttavia nel corso degli ultimi anni sono comunque stati approvati diversi provvedimenti a sostegno dell’efficienza energetica.

Con la Direttiva del 2004 sulla promozione della cogenerazione il Parlamento ed il Consiglio hanno evidenziato l’importante ruolo della produzione combinata di energia elettrica e calore a livello comunitario nel contesto della riduzione dei consumi di energia primaria. La direttiva definisce un criterio unico a livello comunitario per la quantificazione dei risparmi di energia primaria derivanti dalla produzione combinata e simultanea di energia elettrica e calore rispetto alle produzioni separate, e dal 2011 in tutti i paesi membri la cogenerazione è definita ad alto rendimento solo se rispetta i criteri riportati nella direttiva.

L’eventuale sostegno economico alla cogenerazione deve essere basato sui risparmi di energia primaria conseguiti attraverso il processo cogenerativo. In Italia il quadro relativo al sostegno per la cogenerazione ad alto rendimento (CAR) è stato recentemente completato con il Decreto Ministeriale del 5 settembre 2011.

Per quanto concerne i consumi energetici di prodotti come gli elettrodomestici, la Direttiva 2010/30/UE ha istituito un quadro per armonizzare le misure nazionali sull’informazione degli utilizzatori finali, che si realizza tramite l’etichettatura l’uniformazione delle informazioni per i prodotti che hanno un notevole impatto diretto o indiretto sul consumo di energia. La direttiva ha quindi stabilito le responsabilità degli stati membri per quanto concerne l’introduzione del sistema di etichettatura, di diffusione delle informazioni sui consumi, e del controllo delle responsabilità dei fornitori e dei distributori dei prodotti in questione.

La prestazione energetica dell’edilizia è disciplinata dalla Direttiva 2010/31/UE, che ha definito in quadro generale per metodologia di calcolo della prestazione energetica degli edifici. Tutti i paesi membri devono adottare metodologie di calcolo conformi alle prescrizioni generali della direttiva e fissare requisiti minimi di

63 Direttiva 2004/8/CE del Parlamento europeo e del Consiglio, dell’11 febbraio 2004, sulla promozione della cogenerazione basata su una domanda di calore utile nel mercato interno dell’energia che modifica la direttiva 92/42/CEE.

64 Decreto Ministeriale 5 settembre 2011 - Regime di sostegno per la cogenerazione ad alto rendimento.

prestazione energetica, con la possibilità di distinguere tra edifici nuovi ed esistenti, al fine di raggiungere livelli ottimali in funzione dei costi67.

1.5.1 L’efficienza degli usi finali dell’energia

La Direttiva 2006/32/CE68 ha stabilito per i paesi membri un obiettivo indicativo (non vincolante) di risparmio energetico al 2016 sui consumi energetici finali lordi (CFL) pari al 9% dei consumi medi registrati nel quinquennio 2001-2005. Dal calcolo e dall’obiettivo sono esclusi i consumi energetici relativi ad attività coperte dal sistema EU ETS.

L’obiettivo del 9% è relativo ai consumi tendenziali previsti per il 2016, ed è quindi indipendente dall’andamento futuro reale andamento del consumo di energia: ai paesi viene richiesto di dimostrare/certificare di aver conseguito un determinato ammontare di risparmio energetico sul consumo finale attraverso interventi di efficientamento, ma questo non significa che i consumi debbano diminuire. L’obiettivo è di risparmi energetici in percentuale rispetto al 2001-2005. Il meccanismo non determina necessariamente una diminuzione dei consumi energetici complessivi che possono aumentare o diminuire nel tempo a seconda delle variabili a essi sottostanti69.

La direttiva ha inoltre imposto agli Stati di redire e trasmettere alla Commissione dei piani di azione nazionali per l’efficienza energetica (PAEE), nel quale illustrare le misure di miglioramento dell’efficienza energetica volte al raggiungimento dell’obiettivo del 9%.

<table>
<thead>
<tr>
<th>Tabella 7. Riduzioni dei consumi finali di energia attesi al 2016 e 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settore</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Residenziale</td>
</tr>
<tr>
<td>Terziario</td>
</tr>
<tr>
<td>Industria</td>
</tr>
<tr>
<td>Trasporti</td>
</tr>
<tr>
<td>Totale</td>
</tr>
</tbody>
</table>

% rispetto alla media 2001-2005: -9,60% -14%

Fonte: PAEE 2011

Le misure previste dal PAEE nello specifico dell’Italia e gli obiettivi al 2016 definiti dalla direttiva in Europa contribuiscono ma non esauriscono gli sforzi nel contenere i consumi finali nella proporzione necessaria al raggiungimento degli obiettivi di risparmio di energetico del pacchetto clima energia (che oltretutto sono espressi in termini di energia primaria e non di consumi finali).

67È il livello di prestazione energetica che comporta il costo più basso durante il ciclo di vita economico stimato di un edificio o di un elemento dell’edificio.

68Direttiva 2006/32/CE del Parlamento Europeo e del Consiglio, del 5 aprile 2006, concernente l’efficienza energetica degli usi finali dell’energia e recante abrogazione della Direttiva 93/76/CEE del Consiglio.

69Lo stesso ragionamento vale per l’obiettivo al 2020 del pacchetto clima-energia.
La normativa sull’efficienza energetica, che pur è il settore più importante per la realizzazione degli scenari di decarbonizzazione, è la parte più debole del pacchetto clima.

Il raggiungimento degli obiettivi di efficienza energetica al 2020 e l’implementazione delle politiche energetiche a essi connesso sono passaggi fondamentali per il raggiungimento dei target di riduzione delle emissioni di lungo periodo fissati dalla Roadmap 2050 e dall’Energy Roadmap 2050. Per queste regioni nel giugno 2011 la Commissione ha pubblicato una proposta di Direttiva sull’efficienza energetica con la quale viene mantenuto l’obiettivo al 2020 e vengono stabilite misure vincolanti di risparmio di energia primaria. La proposta è al vaglio del Parlamento e del Consiglio.

1.5.2 La nuova proposta di direttiva sull’efficienza energetica

La proposta di direttiva sull’efficienza energetica del 22 giugno 2011 vincola gli stati membri ad introdurre alcune misure per il supportare il miglioramento dell’efficienza energetica e centrare l’obiettivo di un risparmio di energia primaria del 20% rispetto ai consumi tendenziali previsti per il 2020.

- **Enti pubblici**: dal 1 gennaio 2014 ogni anno il 3% della superficie totale degli immobili di proprietà di enti pubblici dovrà essere sottoposta a ristrutturazioni che rispettino i requisiti minimi di prestazione energetica stabiliti dal singolo Stato membro in conformità con la direttiva 2010/31/UE.
- **Regimi obbligatori di efficienza energetica**: gli stati membri saranno tenuti a istituire dei regimi nazionali obbligatori di efficienza energetica; tutti i distributori di energia o tutte le società di vendita di energia al dettaglio dovranno conseguire risparmi energetici annui pari all’1.5% del volume delle vendite realizzate all’interno dello Stato membro. Il risparmio energetico richiesto a ciascuna società obbligata può essere espresso in termini di consumo energetico finale o di energia primaria. Si tratta di sistema analogo al meccanismo dei titoli di efficienza energetica vigente in Italia dal 2005.
- **Promozione della cogenerazione ad alto rendimento (CAR)** e dei sistemi di teleriscaldamento: entro il 1 gennaio 2014 gli stati membri dovranno stabilire e notificare alla Commissione un piano nazionale per il riscaldamento e il raffreddamento inteso a sviluppare il potenziale nazionale di CAR e del teleriscaldamento e teleraffreddamento efficienti. I nuovi impianti di generazione di energia termica con potenza termica superiore a 20 MW dovrebbero essere dotati di attrezzature per il recupero di calore di scarto attraverso sistemi di CAR, e dovrebbero essere ubicati in prossimità di centri di domanda di calore (impianti industriali o centri abitati).

70 Proposta di Direttiva del Parlamento Europeo e del Consiglio sull’efficienza energetica e che abroga le direttive 2004/8/CE e 2006/32/CE.

71 A esclusione dell’energia usata per il trasporto.
La nuova direttiva sull’efficienza energetica abrogherà la direttiva sulla promozione della cogenerazione e la direttiva sull’efficienza degli usi finali dell’energia.

In questa prima proposta l’obiettivo del 20% al 2020, sui consumi di energia primaria, rimane indicativo, cioè non vincolante, e relativo ai consumi tendenziali previsti per l’anno 2020, mentre le misure introdotte hanno carattere vincolante.

1.5.3 Gli emendamenti ITRE

Il 28 febbraio 2012 la proposta è stata approvata dalla Commissione Parlamentare Industria, Ricerca ed Energia (ITRE)\(^{72}\), la quale ha proposto alcuni emendamenti che dovranno essere discussi e negoziati con il Consiglio.

In primo luogo la Commissione ITRE ha introdotto degli obiettivi vincolanti di risparmio di energia primaria in termini assoluti per il 2020: i paesi membri dovranno fissare e notificare alla Commissione i propri target di consumi di energia primaria al 2020 basandosi su degli specifici valori di riferimento massimi (seconda colonna Tabella 8). Nel complesso gli obiettivi nazionali dovranno portare a una riduzione a livello comunitario del 20% rispetto alle proiezioni 2020.

I paesi dovranno inoltre seguire una traiettoria indicativa di riduzione delle emissioni, arrivando a un risparmio pari al 25% entro il 2014, al 50% entro il 2016, e al 75% entro il 2018, del target di riduzione minima 2020 (terza colonna Tabella 8).

Permane quindi una certa opacità ed incoerenza in termini di obiettivi: se da una parte si impone un obiettivo in termini assoluti (con la fissazione di target vincolante di consumi al 2020 prendendo come riferimento i valori riportati nella seconda colonna della tabella), dall’altra la traiettoria indicativa sugli obiettivi intermedi è basata su riduzioni dei consumi rispetto all’andamento tendenziale (obiettivi minimi di riduzione dei consumi di energia primaria basati sui valori riportati nella terza colonna della tabella, relativamente indipendenti dalla traiettoria dei consumi complessivi), e l’obiettivo complessivo a livello comunitario rimane relativo al tendenziale.

Per quanto concerne l’efficienza energetica dell’edilizia la Commissione ITRE ha fissato un obiettivo indicativo di riduzione dei consumi energetici degli edifici dell’80% entro il 2050 rispetto ai consumi dello stock edilizio del 2010. La quota percentuale di rinnovo degli edifici pubblici è stata invece abbassata dal 3% al 2.5% annuo sul totale degli edifici di proprietà pubblica.

La misura relativa all’introduzione di regimi obbligatori per il risparmio di energia, è stata maggiormente dettagliata dalla commissione ITRE, e il target dell’1.5% annuo di risparmi in capo ai distributori/venditori dovrà essere calcolato sulla media delle vendite dei tre anni precedenti. In tema di CAR e sistemi di teleriscaldamento e teleraffreddamento l’ITRE propone la stesura di Roadmap nazionali entro l’1 gennaio 2015, e successivamente ogni cinque anni.

Nel complesso l’introduzione di obiettivi nazionali vincolanti in termini di riduzioni dei consumi di energia primaria è un segnale importate indipendentemente dall’effettiva configurazione e quantificazione dei target, e nonostante la scelta dell’obiettivo effettivo sia lasciata al singolo stato e non sia fissata, come è avvenuto con la direttiva rinnovabili del 2009, dagli organi comunitari.
In questo capitolo viene presentato lo scenario energetico REF-E per WWF Italia al 2050 compatibile con gli obiettivi delineati dall'Energy Roadmap dell'Unione Europea.

Lo scenario si basa su obiettivi raggiungibili in termini di efficienza energetica e sviluppo di un parco impianti alimentato da fonti rinnovabili in grado di soddisfare il 100% della domanda elettrica al 2050. Gli scenari della Roadmap, gli scenari governativi e gli scenari degli altri studi presi in esame nel precedente capitolo costituiscono il termine di paragone delle scelte dello scenario REF-E per WWF Italia.

Particolare attenzione viene dedicata alla fotografia intermedia al 2030.

2.1 La domanda energetica finale

Lo scenario REF-E per WWF Italia parte da un consumo energetico finale inferiore all'attuale del 40% al 2050, del 16,5% al 2030 e del 5% al 2020.

Come abbiamo visto l'impianto normativo esistente sull'efficienza energetica, sia a livello nazionale che a livello Europeo, non è in grado di garantire il raggiungimento di un tale target nemmeno nel breve periodo (2020). In particolare l'assenza di obiettivi quantitativi di riduzione della domanda in termini assoluti nella legislazione Europea ha suggerito, nello scenario, l'adozione di un obiettivo progressivo di efficienza. La domanda energetica finale nello scenario proposto prevede pertanto diminuzione dello 0,5% dei consumi in termini assoluti dal 2010 al 2020, del 1.25% dal 2020 al 2030 e del 1.65% dal 2030 al 2050.

L'obiettivo al 2020 è ritenuto altamente probabile. La proposta di Direttiva sull'efficienza energetica prevede a oggi l'introduzione di un obbligo in capo alle utilities di promuovere azioni di efficienza energetica corrispondenti ad una diminuzione del 1.5% rispetto ai consumi dell'anno precedente. Ipotizzando una crescita tendenziale della domanda energetica del 1% anno, tale meccanismo dovrebbe essere in grado di allineare i consumi reali all'obiettivo richiesto (-0.5%). Inoltre, l'emendamento della Commissione Parlamentare Industria, Ricerca e Energia di fatto già introduce, per l'Italia, un obiettivo quantitativo corrispondente a quello proposto (-5% al 2020 rispetto al 2010).

Per gli anni successivi il verificarsi dello scenario sarà condizionato dalle scelte di policy messe in campo dall'Unione Europea e dagli Stati Nazionali.

L'obiettivo di riduzione di lungo termine nell'ordine del -40% è già anticipato nella Roadmap 2050 della Commissione Europea. Esso è infatti in linea con 3 dei 5 scenari proposti nella sua Roadmap, dove comunque anche gli altri 2 scenari prevedono una riduzione dei consumi nell'ordine del -30% in termini assoluti. Altri lavori, in particolare il documento programmatico del Governo Tedesco, presenta scenari di efficienza ancor più marcati proponendo una riduzione dei consumi finali sino al 50%. La Federal Environmental Agency tedesca, come abbiamo visto nel capitolo precedente, propone uno scenario di riduzione dei consumi del 58%.

A livello settoriale, dal 2010 al 2020 si prevede che l'industria e il civile comprimano la propria domanda di energia.

73 Il civile comprende i settori del terziario e del domestico.
rispettivamente del 7-8%, mentre la richiesta energetica da parte dei comparti trasporti e agricoltura rimanga invariata.

Al 2050 lo scenario prevede che per tutti i settori la domanda finale sia inferiore del 40% rispetto al 2010; è pertanto richiesto al settore agricoltura e, soprattutto, al settore trasporti, un particolare sforzo di contenimento dei consumi energetici dopo il 2020.

Nel box dedicato all’efficienza energetica è possibile isolare gli anni 2006 e 2007 come anni in cui è avvenuto un importante processo di decoupling tra la crescita economica e l’andamento dei consumi. In particolare nei due anni in oggetto a fronte di una crescita del PIL (+2.2% e +1.7% rispettivamente) si ha avuto un segno inverso nella domanda energetica, ovvero una diminuzione dei consumi finali (-0.81% -1.02%) con percentuali in linea a quelle individuate come necessarie per il conseguimento degli obiettivi di lungo periodo.

E’ difficile isolare all’interno di una tale dinamica quanto degli andamenti finali siano da imputare a cambiamenti dell’assetto produttivo (spostamento del PIL su attività a minore intensità energetica) del paese, quanto siano dovuti a un’effettiva efficacia delle politiche di incentivazione dell’efficienza energetica e quanto dipendano all’elasticità della domanda finale in relazione ai prezzi dei combustibili. Di sicuro il processo non è ancora strutturale e ancora nel 2009 e 2010 i consumi energetici hanno agganciato l’andamento del PIL.

La diminuzione della domanda energetica nel lungo periodo al 2050 è inserita, nello scenario REF-E per WWF Italia, in percentuali equivalenti per tutti i settori (-40%). In realtà la valutazione dei potenziali settoriali e il confronto con altri studi suggerisce una possibile maggiore penetrazione dell’efficienza energetica nel settore dei trasporti e del civile e terziario dove è più facile prevedere importanti
innovazioni tecnologiche, gestionali e di policy. Alcuni lavori arrivano a stimare la domanda energetica finale del 50% e del 80% inferiore rispetto al 2010.

Lo scenario REF-E per WWF Italia privilegia una scelta prossima a quella della Commissione Europea (±40%) rispetto a uno scenario più incisivo. Questo permette, pur in un contesto significativo di riduzione dei consumi finali, di dare opportuna rilevanza alle altre dinamiche dei sistemi energetici che andranno a caratterizzare lo scenario al 2050: crescita della domanda elettrica, penetrazione delle rinnovabili e impatti sui sistemi elettrici.

Incrementi dell'efficienza energetica a livelli superiori a quelli proposti potranno soltanto facilitare il raggiungimento degli obiettivi proposti ma non modificheranno le dinamiche di fondo. Al contrario sistemi energetici con consumi finali più elevati più difficilmente permetteranno il verificarsi dello scenario con un esclusivo ricorso alle fonti rinnovabili.

Nello scenario proposto il consumo finale in Italia scende da 127 Mtep nel 2010 a 106 Mtep nel 2030 a 76 Mtep nel 2050.

Figura 4. Domanda di energia (Mtep)

![Domanda di energia](image)

Fonte: previsioni REF-E
Box 2. Efficienza energetica e crisi

A seguito dell’avvento della crisi economica i consumi energetici e le emissioni di CO2 dei paesi comunitari sono notevolmente diminuiti. Il ruolo degli interventi di efficienza energetica e delle politiche di riduzione delle emissioni risulta quindi ridimensionato se si considerano gli impatti della crisi sul livello di attività economica.

Per l’Italia dal confronto tra l’andamento dei consumi energetici e l’andamento del PIL reale non risulta immediato rilevare l’effetto delle politiche di efficienza energetica (Figura 5).

Se tra il 2005 e il 2007 si è infatti registrato un parziale processo di decoupling tra l’andamento dei consumi primari, che sono diminuiti, e il Pil reale, che ha riportato aumenti relativamente consistenti. Con l’avvento della crisi i trend di consumi e Pil si sono riallineati, e nel 2010, a seguito di una moderata crescita del Pil si è registrato un analogo aumento dei consumi.

La mancanza di un effettivo decoupling strutturale in termini di risparmi di energia è confermata anche dell’andamento dell’intensità energetica, cioè dell’energia richiesta per unità di ricchezza prodotta, e dall’andamento delle variazioni percentuali dei consumi primari e del Pil (Figura 6 e 7). L’intensità energetica di un’economia dovrebbe diminuire nel tempo grazie a processi e tecnologie di efficientamento, seguendo un percorso relativamente indipendente dalla crescita economica del paese. Nei due decenni considerati l’intensità energetica dell’economia italiana ha segnato una tendenza al ribasso, ma negli anni della crisi si è stabilizzata, per poi aumentare nel 2010, a seguito della crescita del Pil e dei consumi. Pil e consumi di energia primaria hanno infatti riportato delle variazioni annuali quasi sempre dello stesso segno, e spesso anche di portata simile, evidenziando la mancanza di un vero processo di decoupling.
La difficoltà nell’individuare il peso effettivo delle misure di efficienza energetica sui consumi energetici complessivi del paese permane anche considerando i risultati ottenuti attraverso il meccanismo di titoli di efficienza energetica (TEE) introdotto in Italia dal 2005. Confrontando questi risultati con il trend di consumi di energia finale registrato nel paese si nota come i TEE hanno finora avuto un peso relativamente contenuto, in quanto nel 2010 i risparmi conseguiti dovrebbero apparentemente ammontare a circa il 3% del consumo di energia primaria del paese. E’ difficile identificare ed isolare tale meccanismo tra le altre variabili di fondo.

Considerata l’importanza notevole assegnata al meccanismo dei TEE nella legislazione nazionale e nella proposta di direttiva Europea appare importante approfondire l’analisi costi-benefici e l’efficacia del sistema dei Titoli di Efficienza Energetica nel condizionare il trend di crescita dei consumi finali del paese, che a oggi sembra ancora prevalentemente condizionato dagli andamenti dell’economia (Figura 8).
2.1 La domanda elettrica

Lo scenario REF-E per WWF Italia prevede, nel contesto sopra descritto, un marcato incremento della domanda elettrica al 2050. Tale incremento è quantificato pari a circa +20% al 2030 ed a +30% al 2050, rispetto al 2010. L'incremento annuale della domanda elettrica risulta pertanto pari allo 0,7% anno su tutto il periodo.

In sostanza, a fronte di una riduzione complessiva dei consumi del 40% si assiste ad un incremento della domanda elettrica del 30%. Questo significa un importante spostamento dei consumi finali a favore dell'elettricità per tutti i settori con dinamiche e percentuali diverse:

- in particolare il peso dell'elettricità nel 2050 raggiungerà il suo massimo nel comparto industriale coprendo il 50% dei consumi energetici finali, il 41% al 2030 rispetto al 33% del 2010
- nel settore trasporti si prevede invece lo spostamento più massiccio dei consumi a favore dell'elettricità, che, partendo da un modesto 2% nel 2010, dovrebbe raggiungere il 47% della domanda settoriale nel 2050
- nel settore civile il peso dell'elettricità sulla domanda raggiungerà livelli inferiori 35% nel 2050, a fronte del 27% nel 2010.

Il settore industriale avrà un forte stimolo allo switching sui consumi elettrici determinato dall'efficacia del meccanismo di Emission Trading e dalla possibilità di installare tecnologie rinnovabili elettriche competitive in autoproduzione. I consumi elettrici al 2050, a fronte di un marcato incremento percentuale, manterranno in termini assoluti il livello del 2010 per effetto del miglioramento dell'efficienza energetica. In particolare, l’elettricità prelevata dal comparto industriale salirà leggermente (+4%) dal 2010 al 2030, quando raggiungerà i 144 TWh, per poi scendere del 13% nel ventennio successivo.
fino ad arrivare a un livello di 124 TWh nel 2050.

Il settore civile sperimenterà un incremento percentuale dei consumi elettrici dovuto in massima parte alla diffusione della pompa di calore e della cucina elettrica. Tuttavia rispetto alla maggior parte degli scenari esposti in precedenza lo scenario REF-E per WWF Italia stima che il contributo elettrico sia più contenuto rispetto agli altri settori, pari al 35% della domanda finale. Solare termico, geotermico a bassa entalpia e, più limitatamente, il ricorso alla biomassa, forniranno importanti quote di domanda finale di calore. Per quanto riguarda questo settore, la domanda di elettricità si ridurrà sia nel periodo 2010-2030 (-6%, da 166 TWh a 155 TWh), sia nel periodo 2030-2050 (-15%, da 155 TWh a 133 TWh).

Lo spostamento dei consumi energetici a favore dell’eletricità è molto marcato nel settore trasporti: dai volumi praticamente nulli del 2010, REF-E prevede una richiesta associata all’utilizzo dei veicoli elettrici di 50 TWh nel 2030 e 139 TWh nel 2050. Si tratta di una massiccia riconversione del parco macchine per uso privato e per il trasporto merci di breve distanza sulla trazione elettrica, nonché dello spostamento della domanda di trasporto su trasporto pubblico locale elettrificato e rotaia. Il 50% del consumo finale del settore dei trasporti al 2050 è previsto essere fornito dal servizio elettrico.

L’eletricità destinata al settore agricolo dovrebbe invece rimanere costante intorno a 5.6 TWh.

Nel complesso, quindi, la domanda di elettricità è prevista in crescita nel lungo periodo a 355 TWh nel 2030 e 401 TWh nel 2050, con un aumento complessivo rispetto ai livelli attuali di circa il 30%.

2.1.1 I profili di prelievo

Particolare attenzione nello sviluppo dello scenario è stata dedicata alla costruzione del profilo settoriale della domanda elettrica, ovvero alla previsione oraria della domanda elettrica oraria. Come vedremo di seguito una delle tecnologie a maggiore penetrazione sarà il solare fotovoltaico la cui produzione è vincolata alle ore giornaliere e caratterizzata da una grossa stagionalità. Fornire uno scenario di profilo di domanda nel lungo periodo, anche in considerazione di un incremento del 30% della domanda finale a seguito dei prelievi
del settore dei trasporti, diventa un elemento importante per descrivere lo scenario 2030 e 2050.

Il profilo di prelievo di energia elettrica associato alle diverse classi di consumatori finali (industria, agricoltura, domestico e terziario) deriva dai dati di letteratura e dal confronto con gli operatori. Il profilo è scomposto tra: i) le ore oggi definite di picco (dalle 9 alle 12 dei giorni feriali), ii) le ore off-peak (le altre ore dei giorni feriali) e iii) i giorni festivi. A differenza delle normali convenzioni, data la peculiarità della domanda in agosto le ore relative a questo mese sono state scorporate dalle altre fasce orarie.

Come si può osservare in Figura 10 si assume che il consumo del terziario sia concentrato nelle ore di picco, mentre il consumo del residenziale e dell’agricoltura sia distribuito in modo più uniforme tra le ore dell’anno, sostanzialmente in linea con i trend attuali. Per il residenziale, in particolare, oggi il consumo medio nelle ore di picco è pari al 33%; per il lungo periodo non ci si attende scostamenti significativi da questo livello perché, nonostante la recente introduzione delle tariffe biorarie per l’elettricità al dettaglio che dovrebbe favorire lo spostamento dei consumi nelle ore off-peak e festive, il forte sviluppo della generazione fotovoltaica, che determina la riduzione dei prezzi elettrici nelle ore di maggiore produzione (ossia le ore diurne, per la gran parte di picco) dovrebbe in realtà mantenere inalterati gli attuali profili di consumo. Per quanto riguarda l’industria, si ipotizza che tre quarti della domanda sia concentrata nelle ore peak e off-peak.

A integrazione dei consumi elettrici “tradizionali” è stata ipotizzata un profilo di domanda elettrica nel settore dei trasporti. La domanda corrisponde al prelievo di energia elettrica per la ricarica delle batterie. Anche in questo caso la profilatura della domanda è stata effettuata su base giornaliera. Nel caso dei giorni lavorativi (rappresentato in Figura 11) si assume che i prelievi necessari alla ricarica dei veicoli elettrici siano effettuati

Figura 10. Consumi elettrici per fascia oraria di prelievo (%)

![Diagramma](image_url)

Fonte: previsioni REF-E
per la maggior parte nelle ore notturne e, in misura minore, nelle ore centrali della giornata (10-12 e 14-16). Un profilo leggermente diverso è stato imputato nei giorni feriali e ad agosto quando si assume una domanda più uniforme nel corso della giornata.

2.2 La produzione di elettricità

Per soddisfare la domanda elettrica con il ricorso esclusivo a fonti rinnovabili è stata ipotizzata una crescita del parco impianti progressiva che permetta di incrementare il contributo delle FER dall’attuale 25% dell’elettricità generata, al 60% nel 2030 ed al 100% nel 2050. In valori assoluti, si dovrebbe salire da poco meno di 80 TWh nel 2010 a 220 TWh nel 2030, fino ad arrivare a oltre 430 TWh a metà secolo, di cui il 5% circa destinato all’esportazione.

La crescita ipotizzata corrisponde a un incremento annuo della produzione rinnovabile di circa 9 TWh anno. Anche se questo ritmo di crescita può sembrare elevato, non risulta lontano da quanto registrato di recente, quando tra il 2009 e il 2010 la generazione rinnovabile è aumentata di 7,4 TWh (5,6 TWh al netto dell’incremento della generazione degli impianti idroelettrici di grande taglia). Tra il 2011 e il 2010 l’incremento registrato è stato già nell’ordine dei 9TWh, al netto del bilancio del idroelettrico. La penetrazione delle rinnovabili è stata idealmente programmata con un primo periodo 2010-2030 in cui si assiste a una crescita media di 7,5TWh anno e un secondo periodo 2030-2050 con una crescita di 10,5 TWh anno. La maggiore producibilità degli impianti nel secondo periodo è legata all’assunzione di miglioramenti tecnologici nelle diverse tipologie d’impianto.

Il contributo delle diverse fonti al raggiungimento degli obiettivi 2030 e 2050 è illustrato in Figura 12. In Tabella 9 e in Tabella 10 è riportato il dato relativo alle previsioni di produzione e alla capacità installata.
Tabella 9 Produzione di elettricità 2030 e 2050 (TWh)

<table>
<thead>
<tr>
<th>Fonti rinnovabili non programmati</th>
<th>2010</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>fotovoltaico</td>
<td>2</td>
<td>88</td>
<td>158</td>
</tr>
<tr>
<td>solare termodinamico</td>
<td>0</td>
<td>5</td>
<td>52</td>
</tr>
<tr>
<td>idroelettrico fluente</td>
<td>2</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>eolico</td>
<td>9</td>
<td>32</td>
<td>63</td>
</tr>
<tr>
<td>geotermico</td>
<td>5</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>di cui: immessa in rete tramite accumuli</td>
<td>3</td>
<td>2</td>
<td>58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fonti rinnovabili</th>
</tr>
</thead>
<tbody>
<tr>
<td>idroelettrico a bacino</td>
</tr>
<tr>
<td>biomassa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fonti tradizionali</th>
</tr>
</thead>
<tbody>
<tr>
<td>combustibili fossili</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totale</th>
<th>308</th>
<th>363</th>
<th>434</th>
</tr>
</thead>
<tbody>
<tr>
<td>di cui: export</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
</tbody>
</table>

Fonte: Terna e previsioni REF-E

Tabella 10 Potenza installata di impianti a fonte rinnovabile 2030 e 2050 (GW)

<table>
<thead>
<tr>
<th>Fonte rinnovabile</th>
<th>2010</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotovoltaico</td>
<td>3</td>
<td>57</td>
<td>104</td>
</tr>
<tr>
<td>Idroelettrico fluente</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Eolico</td>
<td>6</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>Geotermico</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Solare termodinamico</td>
<td>0</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Biomassa solida</td>
<td>0</td>
<td>7</td>
<td>36</td>
</tr>
<tr>
<td>RSU</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Biogas</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Bioliquidi e ibridi</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Idroelettrico a bacino (al netto dei pompaggi)</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totale</th>
<th>30</th>
<th>108</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pompaggi</td>
<td>4</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Batterie</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Fonte: Terna e previsioni REF-E
Vediamo ora nel dettaglio le assunzioni e le ipotesi per ciascuna fonte.

Fonti non programmabili

- Per quanto riguarda il fotovoltaico è stata fatta una distinzione preliminare tra gli impianti dedicati all’autoconsumo e quindi direttamente connessi alle reti di distribuzione e il fotovoltaico connesso alla rete nazionale. La potenza complessiva di PV cresce dagli attuali 13 GW a 56 GW nel 2030 a 104 GW nel 2050 con un incremento delle installazioni anno nello ordine di 2.4 GW anno, in linea con le installazioni realizzate in Italia nel 2010 ma fortemente inferiori al livello di installazioni del 2011 di 9 GW.

- Una quota importante di potenza viene dedicata all’autoconsumo, circa il 60%-70% delle installazioni complessive. L’autoproduzione nel 2030 dovrebbe arrivare a coprire tra il 10% e il 20% della domanda nei diversi settori finali. Nel 2050 questa percentuale sale al 30% nel settore civile e nei trasporti, grazie a uno sfruttamento capillare delle superfici utili sui tetti degli edifici pubblici e privati e delle stazioni di parcheggio. Mentre dovrebbe fermarsi al 15% nel comparto industriale, per il quale risulterà più conveniente sfruttare altre fonti (in particolare la biomassa derivante da scarti industriali) o il prelievo diretto dalla rete. Il profilo di produzione orario per il fotovoltaico è elaborato a partire dai dati storici 2010 ed è unico a livello nazionale; il load factor è pari a 1400 ore.

- Gli impianti non destinati all’autoconsumo (e quindi presumibilmente collocati a terra) coprono circa il 30-40% della potenza complessiva. Il profilo di produzione orario è analogo a quello degli impianti destinati all’autoconsumo, ma il load factor è maggiore (1800 ore) per tener conto della migliore esposizione degli impianti collocati a terra e del miglioramento tecnologico. La superficie richiesta per queste installazioni coprirebbe circa 180km2 corrispondenti a circa lo 0,6 per mille del territorio nazionale.

- Per le altre fonti rinnovabili non programmabili “tradizionali” (idroelettrico fluente, eolico) si ipotizza uno sviluppo della capacità nei limiti dei potenziali nazionali di sfruttamento; il load factor è mantenuto invariato rispetto ai limiti attuali in quanto si suppone che lo sviluppo tecnologico che potrebbe aumentare la producibilità degli impianti sia controbilanciato dal progressivo esaurimento dei siti più favorevoli.

- Incrementi di producibilità poco significativi sono ipotizzati per l’idroelettrico fluente grazie a interventi di ripotenziamento ed efficientamento delle centrali esistenti e di una crescita nel settore degli acquedotti e della microgenerazione.

- La crescita dell’eolico è ipotizzata a 0,7GW anno per tutto il periodo con un inevitabile progressivo sviluppo degli eolici off-shore. La crescita dell’eolico è paragonabile a quella registrata negli ultimi anni e inferiore a quella 2009-2010 di 1GW.

Fonti rinnovabili di base

- Nel settore civile è previsto uno sviluppo degli impianti cogenerativi
alimentati a biomassa solida; il funzionamento di questi impianti sarà limitato ai mesi invernali e alle ore di richiesta di riscaldamento, così che l'elettricità da essi generata arriverà a soddisfare fino al 5% della domanda elettrica complessiva del settore terziario.

- Per quanto riguarda i settori agricolo e industriale è previsto il completo sfruttamento degli scarti di lavorazione organici ai fini della produzione di elettricità (e della produzione del calore). Lo scenario prevede quindi che le aziende agricole e le industrie cartarie, alimentari e del legno e mobilio arrivino a soddisfare interamente la propria domanda elettrica attraverso l'energia autoprodotta in impianti alimentati a biomassa, per un totale di 25 TWh nel 2050. Per semplicità il profilo di questi impianti asserviti a processi produttivi è ipotizzato flat nel corso dell’anno.

- E'ipotizzata una crescita del geotermico tradizionale ad alta entalpia del 20% al 2050 rispetto al parco impianti ad oggi installato.

- Per quanto riguarda la biomassa, oltre agli impianti destinati all'autoconsumo, si prevede lo sviluppo di nuovi impianti alimentati a biogas e a biomassa solida.

- In particolare si ritiene raggiungibile il pieno sfruttamento del potenziale di biogas fino al raggiungimento di una potenza di 3 GW con una crescita annua di 140 MW valore in linea con la crescita del settore degli ultimi anni. +130 MW nel 2010.

- Gli impianti a biomassa solida avranno un ruolo relativamente marginale sino al 2030 quando lo scenario prevede ancora un ricorso ai combustibili fossili al 40%, in grado di fornire un servizio elettrico programmabile. Sul lungo periodo la capacità di impianti a biomassa dovrà crescere in funzione della necessità di soddisfare la domanda puntuale di energia elettrica.

- L'idroelettrico a bacino e la biomassa interverranno a soddisfare la domanda nelle ore di scarsa produzione delle fonti non programmabili. Nello scenario è la biomassa ad essere considerata la tecnologia marginale. Per chiudere la domanda al 2050 è resa necessaria una potenza di 28GW da impianti a biomassa con un load factor limitato a 2000 ore anno. Molte altre ipotesi possono entrare in gioco per descrivere uno scenario più efficiente, quale un maggiore ricorso agli accumuli, il ricorso alle importazioni, una redistribuzione dei carichi orari. Non sono fatte assunzioni particolari sull'introduzione delle biomasse di seconda generazione.

- Lo sfruttamento dei rifiuti solidi urbani e dei bioliquidi ai fini della generazione di elettricità sarà molto contenuto; nel
primo caso una sempre maggiore diffusione della raccolta differenziata e le politiche di riduzione dei rifiuti, inevitabili in uno scenario di emissione a -80-95% ridurranno la disponibilità di combustibile, nel secondo il costo del combustibile renderà l’utilizzo proibitivo dal punto di vista economico.

Tecnologie di frontiera

- Con riferimento alle tecnologie di frontiera, si ipotizza uno sviluppo significativo degli impianti solari termodinamici e degli impianti geotermici a bassa entalpia, in particolare nel corso del periodo 2030-2050.

- Per quanto riguarda il solare termodinamico, data la flessibilità associata all’impianto si ipotizza che l’assetto preveda una generazione elettrica dalle ore 12 alle ore 24; la produttività varia nel corso dell’anno in analogia con i dati di irradiazione solare. Il contributo complessivo del solare termodinamico si asetta a circa 50 TWh, il 12% della domanda totale.

- Lo sviluppo del geotermico a bassa entalpia, anch’esso concentrato nel secondo periodo, contribuisce a un 3-4% della domanda finale.

- Non si ipotizza l’ingresso in esercizio di impianti che sfruttino le marelle o il gradiente salino, in quanto si ritiene che esistano certe opportunità di sviluppo in Italia in questo campo.

Gli accumuli

- Associato allo sviluppo di una sempre maggiore capacità di generazione rinnovabile non programmabile sarà necessaria l’installazione di una maggiore capacità di impianti di accumulo. In prima battuta, si tratterà principalmente di impianti di pompaggio associati a impianti idroelettrici a bacino esistenti o di nuova costruzione. Una revisione delle modalità di gestione e un potenziamento dei pompaggi. Successivamente si dovrà passare allo sviluppo e all’installazione di batterie sia nei sistemi di distribuzione che in quelli di trasmissione. Questi impianti garantiranno l’immagazzinamento dell’energia generata dagli impianti non programmabili per 24 ore, permettendo l’immissione in rete dell’elettricità prodotta nelle ore di maggiore richiesta.

- L’inserimento degli accumuli, attraverso i quali prevediamo un transito di circa 50 TWh anno diventa la caratteristica più innovativa dei sistemi elettrici basati sulle fonti rinnovabili. L’abbinamento delle fonti non programmabili con le batterie rende l’apporto di tali fonti altamente prevedibili con la possibilità di programmare le risorse necessarie al bilanciamento con largo anticipo. Lo sviluppo dei sistemi di accumulo accompagnati dalla diffusione delle *smart grid* in grado di fare partecipare attivamente la domanda e la produzione decentrata al bilanciamento del sistema potranno permettere al 2050 il confinamento delle fonti fossili (gas naturale) al ruolo di riserva nei periodi di anomalie climatiche (maltempo e cielo coperto per periodi prolungati, mancanza di vento). In tale evenienza l’apporto termoelettrico interverrebbe fino al ripristinarsi della situazione di normalità. Gli accumuli permettono di programmare tale evenienza.
• Nel 2030 una parte ancora significativa (40%) della domanda elettrica italiana sarà soddisfatta da impianti alimentati a combustibili fossili; questi impianti interverranno a coprire la domanda quando non sarà disponibile sufficiente energia da fonti rinnovabili.

• Nel 2050, per contro, lo sviluppo di fonti rinnovabili sarà tale da rendere l’Italia potenziale esportatrice netta di elettricità.

• Al pari sarà possibile il ricorso a importazioni per surplus di generazione rinnovabile in altri paesi interconnessi con l’Italia.

2.2.1 L’autoproduzione

Sulla base delle assunzioni sopra descritte, l’elettricità da autoproduzione raggiungerà i 68 TWh nel 2030 e raddoppiera nel 2050 con 134 TWh. In termini relativi, rappresenterà circa il 19% della domanda di elettricità nel 2030 e poco più del 30% nel 2050. Una quota consistente, sarà costituita da produzione fotovoltaica, che raggiungerà il 13% e il 23% della domanda elettrica complessiva, rispettivamente, nel 2030 e nel 2050 (Figura 13).

Figura 13. Elettricità destinata all’autoproduzione (TWh)

- **Elettricità immessa in rete**
- **Autoproduzione fotovoltaico**
- **Autoproduzione biomassa**

Fonte: previsioni REF-E
Il forte sviluppo dell’autoproduzione da fonte rinnovabile, e in particolare della quota non programmabile, avrà un impatto significativo sulla domanda di rete. In Figura 14a e in Figura 14b è rappresentato il profilo della domanda lorda di elettricità e della domanda al netto delle autoproduzioni in due giorni lavorativi, invernale e estivo, nel 2030. In Figura 15a e in Figura 15b la stessa rappresentazione è replicata per il 2050.

Come si può osservare, lo sviluppo dell’autoproduzione da fonte rinnovabile ha un impatto ancora contenuto nel 2030 durante la stagione invernale, con la domanda di rete che conserva il suo profilo tipico giornaliero caratterizzato dal picco diurno e da una minore richiesta notturna. Durante l’estate, tuttavia, l’elevata produzione da fonte solare determina già nel 2030 l’inversione giorno/notte del profilo e la domanda di rete risulta maggiore di notte che di giorno; a luglio sul mercato la domanda contendibile nelle ore diurne oscilla tra i 28 e i 36 GW.

Nel 2050 l’impatto dell’autoproduzione sulla domanda di rete è ancora più marcato. Già nel mese di gennaio il picco di domanda si sposta dalle ore diurne alle ore notturne. Nel mese di luglio il largo apporto della generazione fotovoltaica porta a un forte assottigliamento della domanda contendibile nelle ore diurne, che nel caso rappresentato in figura raggiunge un minimo di 10 GW alle ore 13.
2.2.2 Il profilo di produzione giornaliero

L’analisi condotta su base oraria del mix produttivo necessario a soddisfare la domanda di rete è illustrata in Figura 16a e in Figura 16b (per il 2030) e in Figura 17a e in Figura 17b (per il 2050); anche in questo caso fa riferimento a un giorno lavorativo invernale e a uno estivo.

Nel 2030 emerge la necessità di ricorrere ai combustibili tradizionali in tutte le ore della giornata, sia d’estate che d’inverno, per arrivare al completo soddisfacimento della domanda, almeno per quanto riguarda i giorni lavorativi. Gli impianti idroelettrici a bacino e gli impianti a biomassa intervengono principalmente nelle ore di maggiore richiesta di rete, ossia durante i picchi diurni (nel periodo invernale) e nelle ore notturne (nel periodo estivo), rimangono attivi, ma a potenza ridotta, nelle altre ore della giornata. Gli impianti alimentati a fonte non programmabile (presentati nel grafico in forma aggregata) hanno un picco di produzione nelle ore centrali della giornata, grazie al contributo degli impianti fotovoltaici e, in misura minore, dei solari.
termodinamici; nelle ore notturne le fonti diverse da quella fotovoltaica contribuiscono alla copertura della domanda di rete per circa 6 GW.

Nel 2050 la situazione appare molto diversa, sia per l’uscita degli impianti alimentati a combustibile fossile, sia per il diverso profilo della domanda di rete determinato dallo sviluppo della generazione rinnovabile destinata all’autoconsumo di prevalenza fotovoltaica. L’aumento del peso delle fonti rinnovabili non programmabili condiziona inoltre l’esercizio degli impianti programabili e nei mesi estivi determina eccedenze di produzione, nonostante la presenza di impianti di accumulo.

In particolare, nel mese di gennaio il picco di produzione diurna degli impianti non programabili è vicino a coprire interamente (almeno per le ore 13) la richiesta di rete. Il particolare profilo assunto per il solare termodinamico determina inoltre una riduzione più graduale della generazione da impianti non programabili nelle ore pomeridiane e preserali e un apporto maggiore nelle ore serali (occorre ricordare a questo proposito che la flessibilità degli impianti solari
termodinamici consente la prevedibilità del loro livello di produzione e quindi una maggiore sicurezza di rete). Per quanto riguarda l’idroelettrico a bacino, il suo apporto è minimo nelle ore centrali della giornata, mentre è costante nel resto della giornata (intorno a 10 GW). Gli impianti programmabili alimentati a biomassa svolgono invece la funzione tradizionalmente associata agli impianti a gas naturale, ossia di intervenire a chiusura della domanda di rete.

Nel mese di luglio, invece, il livello della generazione da fonte solare è tale che, non solo soddisfa interamente la domanda durante le ore diurne, ma, attraverso gli accumuli, eccede anche la domanda serale tanto da aprire possibilità di export. Gli impianti a fonte programmabile vengono utilizzati solo nelle ore del mattino in cui la capacità di accumulo è esaurita e l’apporto delle fonti non programmabili diverse da quelle solari non è sufficiente a soddisfare interamente la domanda.

Occorre sottolineare che il caso illustrato in figura si riferisce a un giorno lavorativo di luglio; nel 2050 nei giorni (in particolare estivi) di minore domanda, ad esempio nel mese di agosto e nei giorni festivi, le eccedenze di generazione da fonte non programmabile, e quindi le possibilità di export di elettricità, sono ancora maggiori.

Per consentire che le eccedenze del nostro parco solare possano essere effettivamente sfruttate oltre i confini nazionali si dovrà investire fortemente...
nello sviluppo delle infrastrutture italiane ed europee e nella soluzione delle congestioni. In questo modo il potenziale solare dell’Italia, e del resto del Sud Europa, potrà contribuire a soddisfare la domanda proveniente dalle aree settentrionali del continente. Allo stesso tempo, questa politica risulta fondamentale affinché il parco produttivo del Centro-Nord Europa, in particolare l’eolico, possa svolgere la funzione di riserva in caso di cali di produzione del nostro parco non programmabile. In assenza di questa integrazione delle reti europee sarà necessario, oltre a sviluppare ulteriormente i sistemi di accumulo, mantenere operativi impianti alimentati a fonte tradizionale pronti a intervenire come riserva, con elevati costi per il sistema. In ogni caso, anche l’affinamento dei sistemi di prevedibilità della produzione per le fonti non programmabili sarà indispensabile in uno scenario in cui queste fonti apportano un contributo sostanziale.

2.3 I costi

Lo studio di REF-E per WWF Italia si completa con le assunzioni relative ai costi associati all’implementazione dello scenario al 2030 e al 2050, al fine di dare un’indicazione sui costi associati ad un’elevata penetrazione delle fonti rinnovabili.

In Figura 18 sono illustrate le assunzioni REF-E sul costo di investimento delle diverse tecnologie di impianti alimentati a fonte rinnovabile e di sistemi di accumulo nel lungo periodo. Per le tecnologie più mature (idroelettrico a bacino e impianti di pompaggio) non sono previsti miglioramenti in termini di costo. Le maggiori riduzioni sono invece associate alle tecnologie di frontiera (solare termodinamico e batterie). Per gli impianti fotovoltaici di piccola taglia si ipotizza un graduale allineamento ai costi degli impianti fotovoltaici di grande taglia. Date queste ipotesi, il costo di investimento per lo sviluppo della nuova capacità rinnovabile e dei sistemi di accumulo di elettricità dovrebbe collocarsi intorno a 7 miliardi di euro/anno nel periodo 2020-

Figura 18. Costo di investimento delle tecnologie a fonte rinnovabile e di accumulo di energia (€/kW)

Fonte: previsioni REF-E
Obiettivo 2050 – Un rapporto REF-E per WWF Italia

2030 e a 9.5 miliardi di euro/anno nel periodo 2030-2050.

Per avere un quadro completo dei costi associati allo scenario di elevata penetrazione delle rinnovabili lo studio ha considerato anche:

- i costi variabili per l’utilizzo degli impianti alimentati a combustibili fossili, ipotizzati pari a 60 €/MWh, in linea con le previsioni REF-E relative al prezzo del gas nel lungo periodo
- i costi variabili per l’utilizzo degli impianti a biomassa, per i quali si ipotizza un costo del combustibile pari a 70 €/MWh
- i costi per l'integrazione delle rinnovabili nella rete (sviluppo delle infrastrutture) e per il rinnovamento del parco esistente degli impianti alimentati a fonte rinnovabile, per ipotesi pari a 4 miliardi di euro/anno.

Sulla base di queste ipotesi deriva un costo complessivo per il sistema di implementazione dello scenario nel periodo 2010-2050 pari a 837 miliardi di euro incluso dei costi d’investimento e costi combustibile. Da questa analisi sono stati esclusi, perché necessiterebbero di maggiore approfondimento, i costi legati al disattivamento delle fonti rinnovabili non programmabili e l’eventuale rinnovamento del parco esistente di impianti a gas naturale nello scenario alternativo.

Tale risultato è interessante soprattutto se confrontato con i costi associati a uno scenario “conservativo”, che preveda una penetrazione moderata delle generazione rinnovabile. In particolare, a parità di domanda elettrica, si è ipotizzato che nel 2050 il peso della produzione rinnovabile sulla domanda elettrica totale si fermi al 40% del fabbisogno, portando a raddoppiare la generazione verde dal 2010 (76 TWh) al 2050 (154 TWh).

In questo caso si assume che i costi variabili degli impianti alimentati a combustibili fossili sia più elevato (70 €/MWh), in quanto questi devono soddisfare una quota maggiore di domanda contendibile e, allo stesso tempo, che i costi legati all’integrazione delle rinnovabili nella rete siano inferiori. Ne deriva che il costo cumulato di implementazione dello scenario “conservativo” nel periodo 2010-2050 è di

Figura 19. Costi dello scenario di riferimento (Miliardi di euro)

![Costi dello scenario di riferimento](image)

Fonte: previsioni REF-E
Un forte sviluppo delle rinnovabili comporta quindi costi complessivi per il sistema solo di poco superiori (8%) rispetto al caso di uno sviluppo moderato. La differenza consiste nel fatto che lo scenario sviluppato da REF-E per WWF Italia (scenario 100% rinnovabili) richiede un maggiore investimento nel breve-medio periodo, mentre lo scenario conservativo comporta un aumento dei costi nel lungo periodo (Figura 19).

Nei primi anni di implementazione dello scenario 100% rinnovabili, infatti, i costi di sviluppo di nuova potenza rinnovabile sono associati ad un utilizzo ancora rilevante dei combustibili tradizionali, per i quali pesa il costo della materia prima; nel lungo periodo il progressivo abbandono del gas naturale porta invece a una riduzione dei costi per il sistema (-27% dal 2010 al 2050) (Figura 20).

Nello scenario conservativo i costi associati all’utilizzo del gas naturale costituiscono in media l’80% del totale; nel lungo periodo, lo sviluppo delle fonti rinnovabili e i costi associati a una maggiore diffusione delle biomasse determinano una crescita dei costi annui complessivi (+14% dal 2010 al 2050) (Figura 21).

Scegliere di escludere i combustibili fossili dalla generazione elettrica entro la metà

772 miliardi di euro.
del secolo non è più costoso di scegliere una politica più conservativa di moderata penetrazione delle fonti rinnovabili. La differenza tra le due opzioni risiede nella scelta dei soggetti che pagheranno il conto: un forte impulso alla produzione verde richiede un investimento maggiore oggi con benefici in termini di costo particolarmente visibili negli anni futuri.

Gli investimenti nelle fonti rinnovabili nel periodo costituiscono un 0.5%-0.7% del PIL nazionale. A completamente dell’analisi sopra esposta, lo scenario rinnovabile permetterebbe di mantenere le risorse economiche mobilitate in buona parte in Italia con ricadute sia in termini di prodotti industriali che di manodopera per l’installazione e la gestione degli impianti.

Infine, per quanto riguarda i prezzi dell’elettricità, nel caso dello scenario 100% rinnovabili, se si assume una vita utile degli impianti di 20 anni e un tasso di ritorno degli investimenti dell’8%, il prezzo dell’elettricità necessario a remunerare gli investimenti andrà da 50 €/MWh nel 2030 2050 il range di prezzo sarà leggermente inferiore, tra i 40 €/MWh e i 120 €/MWh (Figura 22). Anche in questo caso, il prezzo maggiore è pagato nel breve e medio periodo, nel lungo periodo i consumatori beneficeranno di prezzi inferiori.

2.4 Emissioni di CO2

Al 2030, le emissioni di CO2 del parco termoelettrico italiano pur a fronte di un incremento della domanda elettrica del 20% al 2030 potrebbero essere contenute a 55 Mt con una riduzione del 50% rispetto alle attuali. (-60% rispetto al 1990). Tale diminuzione delle emissioni è in linea con la tabella della Roadmap europea che chiede al settore termoelettrico una riduzione delle emissioni compresa tra il 54 ed il 68%.

L’infrastruttura di impianti a ciclo combinato a gas esistente al 2012 sarebbe sufficiente a soddisfare la domanda di rete al 2030 non rinnovabile (148 TWh), senza necessità di investimenti in nuovi impianti.
sarebbe sostanzialmente equivalente a quella odierna.

Al 2050 le emissioni di CO2 del settore termoelettrico saranno limitate a circa 5Mt legato agli interventi di riserva di centrale a gas pari ad un -97% rispetto al 1990.

In questo scenario la priorità al ricorso al CCS andrebbe riservata alle emissioni dei processi industriali (Attuale perimetro CIP6).
Nella sezione dedicata alla policy vengono raccolte diverse proposte già ideate in altri paesi, ancora in discussione o specifiche per il contesto italiano funzionali al raggiungimento degli obiettivi 2030-2050.

Come anticipato nel testo l’elaborazione di uno scenario al 2050 di completa decarbonizzazione del settore elettrico attraverso l’impiego esclusivo di fonti rinnovabili è definibile come un lavoro di backcast ovvero di ricostruzione delle variabili che permettono il realizzarsi dell’evento.

3.1 Un piano energetico di lungo periodo

La prima indicazione riguarda la necessità di dotarsi di un piano energetico nazionale di lungo periodo coerente con le politiche energetiche europee in cui esplicitare gli indirizzi generali in tema di energia e cambiamenti climatici. Il piano energetico serve a dare un indirizzo agli operatori del settore e ai policy makers nei diversi livelli della macchina amministrativa e ad identificare un percorso di massima in termini di costi e di strumenti da adottare. In assenza di un piano nazionale la politica energetica, in particolar modo quella relativa all’efficienza energetica e alle fonti rinnovabile, soffre di mancanza di continuità.

La crescita progressiva e lineare degli obiettivi di efficienza energetica e di sviluppo delle rinnovabili è un elemento essenziale per realizzare l’obiettivo 2050. Dall’analisi tecnica è emerso che se gli Stati Membri sono in grado di attuare riforme strutturali nei mercati energetici gli obiettivi quantitativi necessari alla piena decarbonizzazione sono alla portata. Una diminuzione dei consumi in termini assoluti dello 0,5-1,65% nel periodo 2010-2050 può essere compatibile con scenari di crescita economica tanto più se la crescita stessa è indirizzata alla realizzazione degli obiettivi. Al contrario, il verificarsi di segnali opposti rispetto agli obiettivi necessita interventi futuri più traumatici per riportare i mercati energetici in linea con gli obiettivi di policy europei.

Al pari la crescita delle fonti rinnovabili, che abbiamo stimato nell’ordine dei 7-9 TWh anno, diventa un obiettivo perseguito solo in presenza di policy di lungo periodo in grado di promuovere uno sviluppo logistico e industriale nazionale al riparo da speculazioni momentanee e inevitabili crisi conseguenti. Il piano energetico dovrebbe indicare il volume di investimenti annuali e proporre meccanismi per la loro remunerazione.

Il costo complessivo cumulato degli investimenti nello sviluppo delle fonti rinnovabili nel periodo 2010-2050 non differisce in maniera significativa dal costo cumulato di uno scenario a bassa crescita delle FER e alimentato prevalentemente a gas naturale. Le stime REF-E per WWF Italia ipotizzano un costo complessivo dello scenario rinnovabile contenuto entro il +10% rispetto a uno scenario gas. È una stima in linea con le previsioni degli altri studi in materia, in particolare con l’analisi offerta da Power Prospective 2030 che accompagna la Roadmap 2050. La grande differenza è lo spostamento consistente di risorse dai costi variabili ai costi di capitale, e dunque la consistente necessità di anticipare le risorse economiche per il finanziamento degli impianti e delle nuove infrastrutture.

Affinché gli scenari si possano verificare la policy dovrà creare sistemi di trasferimento dei costi attraverso la riforma dei mercati elettrici e dei sistemi tariffari. Tali
meccanismi tuttavia dovranno essere in grado di trasferire i costi effettivi delle tecnologie nelle tariffe in maniera più efficace possibile senza cadere nella tentazione di remunerare eccessivamente gli investimenti di oggi scaricandone i costi nel futuro (come è accaduto con il sistema del CIP6, dei certificati verdi e del programma fotovoltaico).

Non vi è nulla di più dannoso di una crescita a singhiozzo. Riversare una quantità eccessiva di risorse su nuove tecnologie e soluzioni significa dare adito a speculazioni, eccedere nei costi a carico dei consumatori a detrimento di una politica di crescita continua e sostenibile. Il finanziamento dell'infrastruttura rinnovabile, che abbiamo stimato tra lo 0.5% e l’1% del PIL, ha il vantaggio di indirizzare le risorse economiche alla crescita interna anziché all'acquisto di combustibili fossili. E' pertanto raccomandabile che il piano energetico al 2050 sia accompagnato da una strategia industriale che riesca a valorizzare al meglio questo vantaggio.

Nello scenario offerto la crescita delle maggiori tecnologie è sostanzialmente un prolungamento lineare di tassi di crescita degli impianti rinnovabili già sperimentate negli scorsi anni. Per le tecnologie mature, in particolare eolico, biogas e fotovoltaico, la penetrazione annuale necessaria al verificarsi dello scenario è addirittura inferiore alla crescita registrata negli ultimi anni.

Perché questo avvenga è raccomandabile che tutto il sistema d'incentivazione e di riforma dei mercati energetici sia inserito in un quadro di policy nazionale ed accompagnato da valutazioni di impatto economico in grado di calibrare le risorse in relazione ad obiettivi quantitativi. Negli ultimi anni si è assistito, a seguito dell'intervento normativo dell'Unione Europea, alla predisposizione di piani nazionali per l'efficienza energetica e per lo sviluppo delle fonti rinnovabili. Manca ancora uno sviluppo legislativo coerente con tali obiettivi. Dove la coerenza è dimostrabile
solo attraverso la produzione di analisi di impatto economico della legislazione e l’apertura di processi di consultazione sul tema. Nessuno ha la ricetta esatta. La consultazione apre all’innovazione e alla partecipazione di numerosi soggetti all’elaborazione di idee e alla proposta di nuovi meccanismi mutuati dalle esperienze internazionali o derivati dall’inventiva di numerosi professionisti oramai da anni impegnati su questi argomenti.

I piani energetici presentati in UK, Germania e Scozia rappresentano un primo modello in tale direzione.

3.2 Una governance funzionale agli obiettivi

Gli obiettivi indicati dalla Roadmap 2050, e gli scenari elaborati e proposti, non sono né scontati né di facile attuazione. Un tema importante di policy da affrontare è quello di dotare il paese di una struttura di governance ai diversi livelli di sussidiarietà funzionale al raggiungimento degli obiettivi energetico-ambientali.

Energia e ancor più clima sono temi trasversali a diverse attività pubbliche. A oggi le competenze dirette in energia ricadono prevalentemente sul Ministero dello Sviluppo Economico e in second’ordine sul Ministero dell’Ambiente, al contrario per le competenze sui temi del clima si fa riferimento prevalentemente al Ministero dell’Ambiente. Inoltre questi Ministeri hanno di fatto poco o nessun coinvolgimento in materia nei settori dove si verificano i consumi finali.

Il Ministero delle Infrastrutture e dei Trasporti non include tra le sue priorità la riconversione a trazione elettrica del sistema di trasporto privato, dal momento che si occupa delle problematiche relative a 20 milioni di auto tradizionali. Allo stesso modo, la riconversione energetica degli edifici della pubblica amministrazione (un potenziale enorme per l’efficienza energetica) non avrà alcuna rappresentanza nei Ministeri a cui tali edifici sono destinati, essendo questi ultimi impegnati su altre priorità; così l’agricoltura e così gran parte delle attività che costituiscono il bilancio energetico finale di un paese.

Il fenomeno è ancora più evidente nell’amministrazione pubblica locale, dove priorità e competenze raramente riguardano i temi di energia e clima. La regolazione del traffico è eventualmente affrontata al fine di ridurre gli inquinanti locali, dando poco rilievo alla valutazione energetica o climatica. La messa in efficienza di case ed edifici contribuirà al risparmiare energia e riscaldamento, riducendo le esigenze energetica migliore e climatica. Ma le nuove assunzioni di personale nella macchina amministrativa saranno funzionali alle priorità dei Ministeri e degli Assessorati esistenti.

Senza una chiara rappresentanza amministrativa del tema clima-energia difficilmente emergano nella macchina pubblica le capacità, le professionalità e un punto di vista energetico-climatico coerente con la politica europea. A fronte dell’adozione di un piano energetico al 2050 sarà importante dare un mandato chiaro a una specifica struttura che abbia come core business la politica climatica.

Senza un chiaro mandato sarà difficile che l’amministrazione pubblica si avventuri in politiche che la distolgono dalle priorità contingenti. Questo è ancor più vero dal momento che l’ostacolo più difficile da affrontare per il verificarsi dello scenario è riuscire a destinare risorse economiche oggi per gli investimenti necessari a riformare i sistemi energetici di domani.

La Commissione Europea per elaborare una politica climatica coerente e incisiva ha
inaugurato una Direzione interamente dedicata alla politica per il clima. L’adozione di una Roadmap della portata di quella proposta dalla Commissione Europea inevitabilmente implica l’adozione di una governance funzionale ad un obiettivo possibile ma per nulla scontato.

3.3 Una fiscalità coerente con gli obiettivi

La fiscalità costituisce il 43.5% del Pil italiano. È impensabile ridurre dell’80-90% le emissioni di CO2 se tale 43.5% non lavora nella stessa direzione degli obiettivi di policy.

È necessaria una rilettura della fiscalità che identifichi, correggendo, le spinte opposte alla promozione dell’efficienza, delle tecnologie e delle pratiche carbon neutral. Tale rilettura non implica maggiori o minori entrate per lo Stato, ma semplicemente elimina le contraddizioni tra la fiscalità e le politiche per il clima. Una tale lettura potrà essere fatta unicamente da una struttura che abbia in mente il punto di vista energetico-climatico e non il dedalo di esenzioni e complicazioni connesse all’attuale sistema fiscale nazionale.

Un successivo passaggio potrebbe quindi riguardare l’elaborazione di una fiscalità ambientale più propriamente orientata agli obiettivi della Roadmap.

La possibilità di introdurre una fiscalità sui prodotti in relazione al loro contenuto di CO2 nelle diverse fasi di processo (ICE – imposta carbonio emesso) potrà essere presa in considerazione in alternativa o in parziale sostituzione dell’attuale IVA.

Un carbon floor price sui prodotti energetici sul modello del Regno Unito potrebbe essere introdotto a supporto del meccanismo di Emission Trading per stabilizzare il segnale di costo di lungo periodo e facilitare gli investimenti in tecnologie carbon neutral anche in coincidenza con un prezzo delle quote del meccanismo di ETS troppo basse.

Particolare attenzione andrà dedicata al settore industriale al fine di non perdere competitività a livello internazionale. Meccanismi fiscali premianti a fronte di investimenti nell’efficienza e nelle fonti rinnovabili possono costituire un buono ed efficace strumento di policy per il settore industriale. Anche in questo caso la Gran
Bretagna ha anni di esperienza in materia. Il settore industriale è già incluso in parte nella direttiva ETS. Per quanto una buona parte delle quote assegnate ai settori industriali sia ancora assegnata a titolo gratuito, la grande impresa sta già pagando i costi delle politiche climatiche europee.

Nel settore dei consumi domestici e commerciali un possibile strumento per promuovere l'efficienza energetica potrebbe essere l'introduzione dell'IMU, per la componente riservata ai comuni, in relazione alla classe energetica dell'abitazione. Il meccanismo avrebbe il vantaggio di facilitare l'efficienza energetica anche nelle case oggi in affitto dove l'attuale interesse contrastante tra il locatore e il locatario rappresenta una difficile barriera, nonché di promuovere la certificazione energetica nelle abitazioni private, passaggio indispensabile per la promozione dell'efficienza energetica.

L'introduzione delle aliquote IMU massime potrebbe scattare nel momento in cui le amministrazioni locali non fossero in grado di soddisfare gli impegni di riduzione introdotti dal burden sharing recentemente introdotto a livello nazionale.

Quindi la completa trasformazione della TARSU in relazione all'effettivo quantitativo di rifiuti prodotta con l'introduzione di tariffe progressive è un passaggio molto importante per influire sugli sprechi di materia e prodotto che non sono compatibili con obiettivi ambiziosi di decarbonizzazione. Anche nel settore dei trasporti le politiche fiscali potrebbero avere il loro effetto senza modifiche per il bilancio dello Stato.

Nel settore del trasporto privato sarebbe opportuna l'introduzione di meccanismi fiscali che spingano le imprese ad incentivare l'uso di tecnologie e sistemi di trasporto a minore impatto climatico. Ad esempio potrebbe essere lanciato, anche in via sperimentale, un sistema di detrazioni fiscali dei costi di trasporto non più come un tetto al fatturato dell'impresa, ma in base ad un tetto di emissione di CO2. In tal modo l'impresa avrebbe l'incentivo a orientare gli spostamenti sui mezzi di trasporto a minore emissione di CO2, dall'aereo al treno per esempio. Il meccanismo quindi costituirebbe un buon incentivo per la promozione di abbonamenti ai mezzi pubblici e la diffusione dell'auto elettrica (con conseguente ricaduta positiva sull'accelerazione della penetrazione dei punti di ricarica nei pressi dell'azienda) anziché promuovere la diffusione dell'automobile tradizionale come premio defiscalizzato ai dipendenti, come avviene oggi. E' opportuno quindi calibrare il bollo auto, come avviene in Irlanda già dal 2008, all'emissione di CO2 delle automobili, informazione oramai obbligatoria sui libretti di circolazione (Tabella 11).

A seguito dell'introduzione del Burden Sharing regionale con decreto del 15 marzo recante “Definizione e qualificazione degli

Tabella 11. Il bollo auto in Irlanda in relazione alle emissioni di CO2 delle autovetture

<table>
<thead>
<tr>
<th>C02 Band 2012 Car Tax</th>
<th>€ anno bollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band A: 0-120g/km</td>
<td>203,2</td>
</tr>
<tr>
<td>Band B: 121g -140g/km</td>
<td>285</td>
</tr>
<tr>
<td>Band C: 141g-155g/km</td>
<td>419</td>
</tr>
<tr>
<td>Band D: 156g-170g/km</td>
<td>611</td>
</tr>
<tr>
<td>Band E: 171g-190g/km</td>
<td>860</td>
</tr>
<tr>
<td>Band F: 191g-225g/km</td>
<td>1433</td>
</tr>
<tr>
<td>Band G: 226g/km or more</td>
<td>2867</td>
</tr>
</tbody>
</table>

Fonte: www.irishlinks.co.uk
Obiettivo 2050 – Un rapporto REF-E per WWF Italia

obiettivi regionali in materia di fonti rinnovabili e definizione della modalità di gestione dei casi di mancato raggiungimento degli obiettivi da parte delle regioni e delle province autonome”, sarà importante definire un pacchetto di meccanismi fiscali decentrati in tema di energia. Il burden sharing infatti trasferisce alle Regioni obblighi diretti di promozione delle fonti rinnovabili ed indiretti di promozione dell’efficienza energetica. Il quadro andrebbe completato con il trasferimento di competenze fiscali in tema energetico in grado di fornire degli strumenti adeguati per il perseguimento degli obiettivi.

Quindi, con attinenza, al tema della fiscalità è importante fornire due considerazione relative allo scenario proposto.

A oggi il peso fiscale su diesel e benzina costituisce la metà circa del prezzo finale. Il trasferimento dei consumi energetici dei trasporti sul settore elettrico offrirà ampi margini di manovra e di riforma fiscale. Al pari sarà importante proporre sistemi fiscali ad hoc per i diversi settori. Una fiscalità progressiva sui consumi elettrici potrebbe essere uno strumento valido per promuovere l’efficienza nel settore domestico. Per il settore industriale, al contrario sarà importante non gravare la componente fiscale e addizionale della tariffa elettrica per non dare un segnale in senso opposto rispetto all’obiettivo di incrementare la percentuale di energia elettrica sui consumi finali industriali. Efficienza e fonti rinnovabili andranno promosse attraverso esenzioni fiscali e agevolazioni all’autoproduzione.

3.4 Una via intelligente e coraggiosa per l’efficienza energetica

Dall’analisi effettuata risulta come sia l’efficienza energetica a rappresentare il cardine di una politica climatica efficace. In particolare lo scenario REF-E per WWF Italia identifica nell’obiettivo di riduzione dei consumi del 40% al 2050 rispetto al 2010 la soglia per il raggiungimento dello scenario. Si tratta di introdurre meccanismi in grado di rendere strutturale il decoupling tra PIL e domanda energetica finale. Una politica fiscale e tariffaria dell’energia aiuta in tale direzione, ma affinché la strategia per la promozione dell’efficienza energetica non sia solo un costo è importante dotare il sistema di una molteplicità di strumenti nei diversi settori.

A oggi non esistono meccanismi in grado di garantire l’obiettivo di riduzione in termini assoluti dei consumi finali. L’emendamento avanzato dalla ITRE alla proposta di direttiva della Commissione Europea di fatto mira ad inserire un obiettivo di efficienza energetica al 2020 che, per l’Italia, determinerebbe una riduzione dei consumi del 4%, rispetto al 2010 ovvero dello 0.4% annuo. E’ la prima volta che si parla di una riduzione in termini assoluti.

L’emendamento dovrebbe essere l’occasione per anticipare la sperimentazione e la progressiva introduzione di meccanismi in grado di conseguire risultati di promozione dell’efficienza energetica con impatti in termini assoluti sulla domanda finale.

L’attuale sistema dei Titoli di Efficienza Energetica non ha ancora dimostrato la propria efficacia e non sono ancora stati fatti studi indipendenti in grado di evidenziare il rapporto costo-beneficio del meccanismo. A oggi l’obbligo di acquisto dei TEE non garantisce il raggiungimento di una riduzione in termini assoluti della domanda energetica. Il sistema dei TEE dovrebbe essere inteso come lo strumento residuale per la
promozione dell’efficienza energetica al netto degli altri meccanismi.

Il sistema dei TEE deve essere coordinato con le altre politiche e in particolare deve essere accompagnato da una politica che anticipi il più possibile l’introduzione degli standard di efficienza nei diversi settori.

L’introduzione tardiva, e solo in seguito all’intervento dell’Unione Europea, del divieto di vendita delle lampadine a incandescenza ha dimostrato, ad esempio, come il ritardo nell’introduzione di standard di efficienza si traduca in costi inefficienti per il sistema assorbendo importanti risorse da altri progetti e interventi a maggiore impatto e con maggiore bisogno di supporto.

Nel settore domestico il meccanismo dell’IMU potrebbe essere accompagnato da un meccanismo simile al Green Deal che verrà introdotto in UK a partire dalla fine di quest’anno.

Il Green Deal ha istituito un meccanismo di finanziamento per gli interventi di miglioramento dell’efficienza energetica delle abitazioni e delle proprietà immobiliari a uso commerciale, che permette al consumatore di ripagare il costo dell’intervento attraverso un ricarico della propria bolletta energetica. Il consumatore riceverà quindi un finanziamento che andrà a pagare attraverso la bolletta, ma allo stesso tempo i guadagni di efficienza porteranno a una riduzione dei costi energetici, evitando di dover sopportare direttamente ed anticipatamente i costi dell’intervento. Questo meccanismo di finanziamento ha il duplice vantaggio di risolvere il problema di accesso al finanziamento da parte del consumatore e di coinvolgere direttamente l’impresa di fornitura nella promozione dell’efficienza energetica.

Quindi risulta utile introdurre degli obiettivi di riconversione del patrimonio edilizio in termini percentuali annui. Considerato l’ambizioso obiettivo al 2050 in termini di riduzione dei consumi la percentuale di riconversione dovrebbe essere del 2.5%/anno, in maniera da prevedere la totale riconversione del patrimonio edilizio italiano per tale data.

Considerato quindi l’elevato patrimonio edilizio storico, dove è più difficile conseguire efficienza energetica, potrebbe rilevarsi un’opzione intelligente di policy per il nostro paese anticipare gli obiettivi di efficienza energetica nelle nuove costruzioni. Si potrebbe ad esempio attuare il recepimento della nuova direttiva sulla Prestazione energetica negli edifici prevista per luglio 2012 anticipando gli obblighi per la costruzione di edifici passivi già al 2014.

Abbiamo visto nella presentazione dello scenario come nel settore dei trasporti il successo dell’efficienza energetica passi innanzitutto dalla riconversione del parco macchine privato alla trazione elettrica. La promozione dell’auto elettrica nel breve periodo passa attraverso incentivi fiscali alle imprese, ed incentivi capitali per i privati. Oggi il bollo auto è in relazione ai kW del veicolo, la fiscalità andrebbe spostata sulle emissioni specifiche di CO2 del mezzo. Da tale riforma sarebbe possibile ricavare le risorse per l’incentivazione dell’auto elettrica per uso privato. Nel breve periodo la fiscalità dovrebbe essere lo strumento più efficace per orientare i consumi ad autoveicoli più efficienti, come illustrato in precedenza.

Ulteriori riduzioni del consumo potranno essere realizzate attraverso politiche focalizzate sulla domanda, ad esempio politiche di urbanizzazione che prevedano una diminuzione del fenomeno dello
sprawling urbano, il decentramento dei servizi, politiche per la distribuzione oraria della domanda di punta.

Una strategia settoriale andrà probabilmente elaborata per l'efficientamento energetico dell'amministrazione pubblica. La raccomandazione contenuta nella proposta di direttiva europea sull'efficienza ancora in discussione, di rinnovamento del 3% annuo degli edifici pubblici, potrebbe essere anticipata nella legislazione nazionale. Una prima occasione potrebbe essere offerta dal recepimento della direttiva 2010/31/CE sulla prestazione energetica nell'edilizia.

Il settore pubblico oggi è a corto di risorse economiche. Eppure investire in efficienza energetica offre dei ritorni dei capitali in periodi molto brevi con diretto beneficio per le casse dello Stato. In base a tale considerazione andrebbero studiati meccanismi per derogare gli interventi in efficienza energetica dal patto di stabilità, nonché andrebbe valutata la possibilità di emissione da parte dei Comuni di BOC per il recupero delle risorse finanziarie necessarie. Ulteriori risorse potrebbero essere recuperate dal 50% dei proventi della vendita all’asta delle quote di ETS ai sensi della direttiva. Il rimanente 50% dei proventi potrebbe anch’esso essere destinato all’efficienza energetica del settore industriale.

La nuova legislazione per l’incentivazione delle FER termiche e dell’efficienza energetica potrebbe costituire un meccanismo maggiormente favorevole per la promozione dell’efficienza energetica nell’amministrazione pubblica, di fatto esclusa dal meccanismo del 55%. Tuttavia il valore economico della taglia degli interventi riconosciuti dovrebbe essere di una scala sufficientemente grande da includere progetti di dimensione adeguata ai servizi pubblici oggetto degli interventi (scuole, ospedali, uffici di grandi metrature in edifici storici)

3.5 Dagli incentivi al sistema rinnovabile

Con le fonti rinnovabili che incrementano progressivamente il loro contributo alla generazione elettrica al 60% al 2030 e al 100% al 2050 è inevitabile prevedere un’organizzazione del mercato elettrico, sia negli aspetti economici sia nelle caratteristiche tecniche, funzionale alle FER.
Non si dovrà più parlare di sistemi d’incentivazione ma di obiettivi di crescita delle fonti rinnovabili e di loro integrazione nel sistema elettrico.

A fronte di uno scenario di previsione di domanda elettrica e di un obiettivo percentuale di penetrazione delle fonti rinnovabili è noto il quantitativo annuo incrementale di FER da realizzare.

Il meccanismo dei certificati verdi permette uno sviluppo delle FER in ragione di obiettivi progressivi, e, almeno in teoria, sembra poter essere il meccanismo più efficace per un loro sviluppo nel lungo periodo. Tuttavia l’esperienza italiana in merito, caratterizzata da una difficoltà del legislatore a elaborare un meccanismo efficace, suggerisce l’introduzione del meccanismo delle aste, forse meno efficiente, ma più facilmente gestibile.

Il meccanismo d’asta, a cui sta lavorando il legislatore, è uno strumento adeguato alla promozione delle fonti rinnovabili nel mercato elettrico.

Le quote di potenza per le diverse fonti rinnovabili da allocare dovranno essere proporzionali agli obiettivi di lungo periodo ed andranno introdotti meccanismi per garantire l’effettiva realizzazione degli impianti.

E’ pertanto opportuno che la legislazione specifichi le quantità e la frequenza delle aste su un periodo sufficientemente lungo di tempo. Per fare questo è necessario accompagnare il provvedimento con una vision di lungo periodo.

L’introduzione di un prezzo minimo e massimo per orientare gli esiti delle aste è una precauzione condivisibile. Maggiore attenzione andrà dedicata a evitare il radicarsi di posizioni dominanti nelle diverse tecnologie da parte di singoli operatori. Per facilitare la partecipazione di più operatori, possibilmente anche esteri, sarà utile migliorare e rendere trasparenti i processi di autorizzazione degli impianti e fornire una vision del mercato elettrico italiano e della regolazione delle fonti rinnovabili di lungo periodo.

Per facilitare la partecipazione degli operatori alle aste, e quindi permettere una definizione dei prezzi di acquisto dell’energia FER in maniera concorrenziale, passaggi della regolazione, quali il dispacciamento, gli sbilanciamenti, la regolazione delle congestioni e i distacchi dovranno essere chiariti non solo nel breve ma nel lungo periodo.

A oggi il settore delle rinnovabili sta soffrendo l’incertezza legislativa e la mancanza di chiarezza nella programmazione.

Il passaggio dal sistema d’incentivazione dai certificati verdi, la cui spinta alla realizzazione degli impianti è costituita dalla quota d’obbligo, al sistema delle aste, a partecipazione volontaria, implica il rischio che, se il mercato non offre sufficienti garanzie, gli operatori non si presentino alle aste o chiedano prezzi d’ingresso più elevati del reale costo d’investimento della tecnologia.

Nel mercato elettrico una componente importante e crescente del prezzo dell’elettricità sarà data dal costo delle quote di emissione ai sensi della direttiva ETS.

Il meccanismo ETS non sta oggi dando segnali di prezzo sufficienti a promuovere lo sviluppo delle tecnologie carbon neutral. Esso tuttavia è uno strumento efficace di riduzione delle emissioni climateranti e di contestuale promozione delle FER. Per un suo

Se le fonti rinnovabili sono destinate a coprire porzioni sempre più ampie dell’approvvigionamento elettrico, è inevitabile che queste contribuiscano al bilanciamento del sistema. Sarà quindi opportuno che gli impianti rinnovabili svolgano un ruolo attivo anche nel dispacciamento dell’energia elettrica. Questo tuttavia non deve essere inteso come un provvedimento “punitivo” a fronte di un’“eccessiva” penetrazione delle FER, ma come un esito inevitabile del mercato elettrico in cui le rinnovabili continueranno a incrementare il loro contributo. Lo sviluppo delle rinnovabili renderà il mercato sempre più un mercato della capacità di lungo periodo (gestita con le aste) al quale si affiancherà un mercato del dispacciamento orario in cui entreranno a fare parte gli impianti rinnovabili programmabili, i meccanismi di accumulo, e la gestione intelligente della domanda. Il cuore del mercato elettrico di oggi, il cosiddetto Mercato del Giorno Prima, perderà progressivamente d’importanza.

La gestione della riserva è uno degli aspetti più delicati della transizione a un sistema pienamente approvvigionato dalle fonti rinnovabili. Le fonti rinnovabili non program babili sono altamente prevedibili soprattutto se connesse a sistemi di accumulo. Lo sviluppo degli accumuli e la regolazione della riserva diventano priorità del mercato elettrico.
Sarà indispensabile innanzitutto rimuovere i dubbi se e come considerare gli accumuli infrastrutture di rete o di produzione. Andrebbe valutata l’opportunità di estendere il riconoscimento dell’attuale remunerazione sugli investimenti della rete all’8-10% (nel caso degli accumuli) anche ai produttori da fonti rinnovabili che volessero affiancare la propria unità di generazione ad accumuli elettrici. Per fare questo tuttavia è necessario intervenire nella legislazione nazionale ed europea che di fatto separa in maniera chiara l’attività di trasmissione da quella di generazione elettrica.

Lo sviluppo delle FER andrà affiancato a provvedimenti volti alla riduzione del carico burocratico e amministrativo per lo sviluppo degli impianti che ancora oggi coprono una percentuale importante dei costi finali di realizzazione.

L’efficienza dell’amministrazione pubblica deve essere perseguita nell’ottica di valorizzare la protezione e la conservazione dell’ambiente. La crescita delle fonti rinnovabili è oramai un percorso inevitabile dei sistemi elettrici. Come emerso nello sviluppo dello scenario, anche a fronte di una diminuzione della domanda energetica del 40% la domanda elettrica crescerà in percentuali rilevanti e così il contributo delle FER. Questo si tradurrà in un bisogno di uso del territorio in alcuni casi anche molto pressante. Per questo motivo è indispensabile dotarsi di strumenti di salvaguardia ambientale e di protezione del territorio che potranno essere introdotti solo da un’amministrazione pubblica intelligente e preparata.

Per mitigare l’impatto sul territorio dello sviluppo delle FER, la strategia più importante è la promozione dell’autoproduzione e della generazione distribuita.

Per fare questo è opportuno rimuovere gli impedimenti normativi che oggi non permettono la fornitura di più utenze all’interno di una piccola rete di utenze. La produzione rinnovabile decentrata dovrebbe essere incentivata attraverso la possibilità di fornire direttamente una molteplicità di utenze elettriche in prossimità del sito di produzione. È utile definire le modalità di copertura dei costi di trasporto ed il pagamento delle componenti A e UC della tariffa elettrica, nonché le implicazioni fiscali nell’ottica di promuovere l’autoproduzione e la distribuzione di energia rinnovabile. Anche in questo caso è opportuno colmare il vuoto regolatorio per la realizzazione di piccole reti d’utenza. Le norme che regoleranno la possibilità o meno di estendere la fornitura elettrica a valle di impianti rinnovabili e piccoli sistemi di cogenerezione a utenti finali condizionerà lo sviluppo della generazione distribuita e delle smart grid.

È importante definire una strategia ed adeguati strumenti di promozione delle smart grid e dei sistemi di accumulo di piccola media dimensione connessi ai sistemi decentrati.

Meccanismi appositi andranno creati per l’introduzione di cogenereazione rinnovabile nei siti industriali. Priorità andrà data ai settori industriali già compresi nella direttiva ETS.

La promozione dell’autoproduzione di piccola scala ha l’enorme vantaggio di promuovere la partecipazione capillare di capitali privati nella trasformazione dei sistemi elettrici. Quindi è uno strumento valido di promozione dell’efficienza energetica.
Con i certificati verdi e il conto energia abbiamo assistito al dispiegarsi di meccanismi inefficaci ed eccessivamente onerosi di sviluppo delle FER. Questo ha innescato meccanismi speculatori che hanno esasperato il conflitto tra la realizzazione degli impianti rinnovabili e la conservazione del territorio. A essi ha fatto seguito una reazione scoordinata e confusa del legislatore, che ha introdotto incertezza sul futuro sviluppo delle FER.

L'enorme costo d'incentivazione del programma fotovoltaico, che nel 2011 ha installato 9 GW di potenza a livelli incentivanti eccessivi, non è responsabilità del “fotovoltaico” ma di chi ha scritto la norma. Altrettanto avveniva qualche anno prima con il sistema dei certificati verdi, estremamente oneroso a fronte dei risultati raggiunti.

E' opportuno riflettere sull'opportunità di mantenere tali oneri nella tariffa elettrica. Essi infatti non hanno nulla a che vedere con il sistema elettrico e lo sviluppo delle fonti rinnovabili ma sono il frutto di errori e di incapacità da parte del legislatore che rischiano di limitare proprio le risorse necessaria alla trasformazione dei sistemi elettrici auspicata e sempre più richiesta dalla legislazione europea.
Il Cambiamento Climatico è una questione importante per il WWF, una minaccia per la vita sul Pianeta come la conosciamo, un moltiplicatore dei problemi e delle carenze esistenti (dissesto idrogeologico, approvvigionamento di acqua, incendi dolosi, ecc).

Il riscaldamento globale provoca non solo un’alterazione delle condizioni climatiche, ma incide sulle risorse idriche, sui cicli di crescita delle piante, sulle condizioni di vita per le persone e la Natura.

L’impatto del cambiamento climatico è già evidente. E potrebbe andare sempre peggio.

Sono molte le cose che dobbiamo e possiamo fare: ma il tempo è poco. **Dobbiamo tenere l’aumento medio della temperatura globale ben al di sotto dei 2°C**: per far questo, la concentrazione delle emissioni di gas serra dovrebbe raggiungere il picco massimo entro il 2015-17, per poi declinare rapidamente. A livello globale, le emissioni vanno ridotte almeno dell’80% entro il 2050, e azzerate nei Paesi Sviluppati, come l’Italia, quelli che hanno storicamente provocato il fenomeno.

Il WWF partecipa attivamente ai negoziati internazionali per ottenere un **Trattato Globale sul Clima**: secondo l’accordo raggiunto in Sud Africa lo scorso anno, il nuovo trattato dovrebbe essere approvato entro il 2015.

Ma dobbiamo innanzi tutto cominciare da casa nostra. **Ognuno deve fare la propria parte**, cittadini, aziende, governi locali e nazionali.

Serve una **Strategia Nazionale per il Clima**, con conseguenti Piani di azione, per la **Mitigazione**, cioè per ridurre le emissioni gas serra (con l’obiettivo di azzerarle entro il 2050); e per l’**Adattamento**, cioè per far fronte agli effetti e gli impatti del cambiamento climatico ormai inevitabili. Il WWF ha proposto delle vere e proprie Linee Guida per la Strategia Nazionale per il Clima.

L’Energia è uno dei campi fondamentali. Attualmente il settore elettrico contribuisce per oltre il 33% alle emissioni di anidride carbonica, il principale gas serra, in Italia.

Il WWF ha lanciato diverse iniziative e campagne per favorire il **risparmio e l’uso efficiente dell’energia da parte di cittadini e imprese**. La campagna sulla **casa** e sui **condomini sostenibili** ha contribuito a far approvare le defiscalizzazione del 55% degli oneri sostenuti per le misure di efficienza negli edifici.
Nel 2011 è stata avviata Officinae Verdi SpA, una società costituita dal WWF e UniCredit, che integra capacità e rete finanziaria, sostenibilità ambientale, qualità e capacità tecnologica, per offrire prodotti e servizi integrati, su energie rinnovabili-efficienza energetica e carbon management, a famiglie e imprese. L’obiettivo è quello di sviluppare un nuovo modello energetico sostenibile di generazione distribuita nel quale ciascuno – famiglie e aziende - può diventare “autoproduttore” e contribuire significativamente alla riduzione degli sprechi e delle emissioni di CO₂.

- Il WWF si batte da anni per l’approvazione di una Strategia Energetica Nazionale che punti decisamente sulle energie rinnovabili per coprire, entro il 2050 al massimo, il 100% del fabbisogno energetico, riducendo nel frattempo drasticamente i consumi di energia e favorendo un uso efficiente dell’energia stessa.

- Il WWF ha partecipato, fin dagli anni ’70, alla battaglia contro l’energia nucleare, non certo per motivi ideologici, ma per i rischi enormi per l’ambiente e la salute non solo in caso di incidente, ma anche per le scorie che nessuno sa come gestire, rischi non certo compensati dalla sua sostanziale anti-economicità. Il WWF ha contribuito in modo sostanziale ai Comitato per il Sì al referendum sul nucleare sia nel 1987 che nel 2011.

- Il WWF ha lanciato nel 2012 la campagna “Stop al carbone, Sì al futuro”, contro le centrali a carbone, la maggiore fonte di emissione di anidride carbonica nonché responsabile di gravi danni alla salute umana.